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Abstract 

Continued rapid advancements in genomic, proteomic and metabolomic technologies 

demand computer-aided methods and tools to efficiently and timely process large amount of 

data, extract meaningful information, and interpret data into knowledge. While numerous 

algorithms and systems have been developed for information extraction (i.e. profiling analy­

sis), biological interpretation still largely relies on biologists' domain knowledge, as well as 

collecting and analyzing functional information from various public databases. The goal of 

this project was to build a text clustering-based software system, called GeneNarrator, for 

functional analysis of genes (microarray experiments). 

GeneNarrator automatically collected MEDLINE citations for a list of genes as the 

source of functional information. A two-step clustering approach was designed to process 

the citations. The first-step (text) clustering grouped the citations into hierarchical topics. 

The second-step (gene) clustering grouped the genes based on the similarities of their occur­

rences across the clusters resulting from step one. Hence, we planned to demonstrate how, 

instead of manually collecting and tediously sifting through potentially thousands of cita­

tions, biologists can be presented with dozens of topics as a summarization of the citations, 

and gene (groups) mapped to the topics. 

In order to improve the first-step text clustering part of the system, several strategies 

were explored, including different vector space models (BOW-based or concept-based) for 

text representation, vector space dimensionality reduction (document frequency filtering), 

and multi-clustering. The most improvement came from multi-clustering. The clusterings 

were evaluated in terms of self-consistency and agreement with a manually constructed gold 

standard dataset using a newly proposed metric, normalized mutual information. 
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Chapter 1 Literature Review and Requirements Analysis 

1.1 Functional analysis of microarray data 

The rapid development of microarray technology has enabled biologists to simultane­

ously monitor the expression of hundreds or even thousands of genes in a single experiment. 

Automated data analysis methods and software tools are invaluable in aiding biologists to 

efficiently and timely process these large amounts of data. Numerous algorithms and sys­

tems have been developed for the "profiling" analysis, i.e. finding patterns in gene expression 

in response to environmental changes [57]. Interpreting the biological meaning of the pat­

terns, however, still mainly relies on human experts' domain knowledge, as well as on find­

ing previously reported information from literature and/or various public databases. While 

an expert's domain knowledge or manual collection from existing data may be sufficient for 

small data sets, it is unrealistic to expect someone to memorize functional properties of thou­

sands of genes. Manually collecting, reading and summarizing them from the literature 

and/or public databases is tedious and time-consuming. Therefore, computer-aided functional 

analysis methods and tools are highly desirable. 

There are a number of such systems that have been reported in the literature. In terms 

of the sources of functional information they rely on, they can be grouped into three catego­

ries. 

1. Some rely on human curated functional annotations with the Gene Ontology [3] in public 

genomic databases. Systems in this category include [2,4,32,35,55,63,71], 

2. Some collect functional information directly from online literature databases, e.g. MED­

LINE [52]. Systems in this category include [5,8,25,33,36,45,54,59,61,62,70]. 

3. Hybrids take advantage of both human curated data and literature, as well as the structure 

of GO. Systems in this category include [21,37,60], 

1.2 Gene Ontology-based functional analysis 

The Gene Ontology (GO) is a controlled vocabulary for describing genes and their 

products from three perspectives: biological process, molecular function and cellular compo­

nent. It was developed starting in 1998 by a group of member organizations, and is coordi­
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nated by the Gene Ontology Consortium. In its 9/2005 release, there were 18,455 concepts 

organized hierarchically in three major branches corresponding to these three aspects: bio-

logical_process, molecular_function and cellular_component. The GO Consortium is also a 

repository of gene/product annotations contributed from many member organizations, e.g. 

FlyBase, the Saccharomyces Genome Database (SGD) and the Mouse Genome Database 

(MGD), to name a few. This makes it an invaluable source of functional information for an­

notating microarray experiments. 

Robinson et al. [63] provided functional descriptions for a gene cluster by counting 

and tabulating their associated GO concepts. The functional properties were represented by 

the most frequently annotated GO concepts of the cluster. THEA [55] went one step further. 

It checked against a user-definable background whether the frequency of a GO concept asso­

ciated with the cluster was statistically significantly different from chance. Another tool, 

GO-Mapper [71], provided a similar description using explicitly annotated GO concepts, ex­

cept that it scored the GO concepts with actual gene expression levels. A drawback of these 

systems is the lack of summarization, which is more problematic when the gene cluster is big 

and the list of GO concepts is long. 

A quite different approach was exploited by the GO-Cluster [2], which switched the 

order of expression profiling and functional analysis. In other words, it performed expres­

sion profiling on a subset of the genes in a microarray experiment that were associated with a 

node of the GO hierarchy tree. Although the strategy seemed new and interesting, it was in­

capable of providing biologists with a functional summarization given a list of genes of inter­

est. 

The Ontologizer [63] used not only the explicitly annotated GO concepts, but also 

their parent concepts as implicit annotations. A similar strategy was also used in THEA [55]. 

Obviously, the intention of using the implicit annotations was to provide some sort of sum­

marization of the explicit annotations. However, the higher a GO concept in the hierarchy, 

the more likely it to be used as an implicit annotation. This made the summarization less 

meaningful, because it consisted of many high-level concepts and the more general concepts 

tended to have higher counts than the more specific ones. 
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The Gene Ontology Categorizer [32] took the summarization one step further. In­

stead of simply counting how many and how often GO concepts were annotated explicitly or 

implicitly to a gene cluster, it tried to score them taking into account both generality and 

specificity. An implicit concept scored higher in generality if it covered more explicitly an­

notated concepts, e.g., a common ancestor of those annotated concepts. On the other hand, a 

concept scored higher in specificity if it was closer to the explicitly annotated concepts, e.g., 

direct parents had higher speciality scores than grandparents. The final output was the con­

cepts with the highest combined scores balanced in generality and specificity. They were 

general enough to summarize most of the explicit annotations, yet not too general to be 

meaningless. 

The above-mentioned systems focused on summarizing the functional properties of a 

gene cluster, i.e., finding what properties were common among genes in the cluster. Some 

other methods were developed to find what properties were different within or about a gene 

cluster. Kennedy et al. [35] developed a method to analyze a large gene cluster by finding 

sub-clusters based on similarities in GO annotations. Implicit annotations (parent concepts 

of the explicitly annotated concepts) were also taken into account, albeit with lower weights. 

The more GO concepts shared in two genes' annotations, the more similar the two genes 

were rated. Sub-clusters of similar genes were then obtained using a distance-based cluster­

ing algorithm (Modified Basic Sequential Algorithmic Scheme). The sub-clusters were high­

lighted on a GO hierarchy graph to illustrate their relationships. 

Badea [4] compared a list of GO-annotated genes (positive examples) against another 

"background" list (negative examples), and extracted those concepts associated with the posi­

tive examples, but not the negative examples. In more detail, first, they crossed out the con­

cepts explicitly or implicitly occupied by the negative examples in the GO hierarchy. Next, 

they marked the concepts explicitly annotated to the positive examples. (But if a concept had 

already been crossed out, do not mark it.) Finally, the marked concepts were moved up to­

wards the root concept until a crossed-out concept was encountered. These marked and up­

graded concepts were the final output, which was interpreted by the author as a functional 

hypothesis of the positive gene cluster. Obviously, the output was very much influenced by 

the selection of the negative examples. A small list would result in very general and less in­
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formative concepts, while a large list might cross out all the concepts and generate empty 

output. The dependency on the negative examples made the interpretation of this analysis 

highly questionable, unless there were standardized rules for picking the negative examples. 

While the summarization-focused systems may be more attractive to biologists, dif-

ferentiation-oriented methods may also be useful in some special cases. However, both types 

of the systems share some common limitations, which result from the insufficiency of GO. 

• The GO itself is still under active development, and far from mature. Its development is 

not balanced. While some branches go down to very deep levels (maximum 18 levels) 

and contain very detailed concepts (e.g. GO:0000201 - nuclear translocation of MAPK 

during cell wall biogenesis), the GO coverage in some areas of biology is incomplete, for 

example, pathways [44] and immunology [32]. 

• GO is updated monthly, so keeping annotations always compatible with the latest GO 

release is not a trivial task. 

• The GO annotations are mainly manually curated by human experts, so inconsistencies 

are more or less inevitable. Badea [4] complained that numerous mistakes in the Pro-

teome HumanPSD database1 had to be corrected by hand before performing the analysis. 

Joslyn et al. [32] pointed out that some annotations from the Gene Ontology Consortium 

were at levels too high to be informative to biologists. 

• GO annotations are only available for well-studied genes in a few model organisms. 

Badea [4] could find annotations for only 26% (39 out of 149) of the genes of interest to 

perform the analysis. Analysis based on such a small sample is risky to extrapolate to the 

whole dataset. 

• There is a time lag between the time when new data is available in the literature and the 

time when it is annotated into the databases. 

1.3 Literature-based functional analysis 

To overcome the limitations of the GO-based systems, some researchers turned di­

rectly to the biomedical literature for functional information. MEDLINE is one of the most 

1 http://proteome.incyte.com/ 
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comprehensive and up-to-date online literature databases for life and medical sciences. It has 

collected about 16,000,000 citations dating back to the 1960's, and more than 10,000 new 

citations are added weekly. An important feature of MEDLINE citations is that most cita­

tions are assigned, by human curators, a list of Medical Subject Heading (MeSH) terms, 

which is a rich source of computer-friendly functional information. The systems that extract 

functional information directly from MEDLINE can be further divided into two sub­

categories based on whether or not they make the assumption (explicitly or implicitly) that 

genes with similar expression patterns are involved in the same functional pathways. 

1.3.1 Assuming similar expressions imply same functional pathway 

Under this assumption, the results of expression analysis, the gene expression clus­

ters, are part of the input to the functional analysis. Then, the task of functional analysis is to 

answer the following questions. 

1. Is a gene cluster functionally coherent? 

2. If it is coherent, what are the functions? 

Raychaudhuri et al. [59,61] developed a method called "neighbor divergence" to an­

swer the first question. They assigned to a gene cluster a score that measured functional co­

herence. The score was based on mutual relevance among the articles associated with the 

cluster. The relevance was measured on the number of an article's "neighbors." Two arti­

cles were neighbors if they shared a certain amount of words. If an article had many 

neighbors in the cluster, it would have a high relevance score. If a cluster had many high-

scored articles, it would have a high functional coherence score. However, even if the 

method could assign perfect scores to the gene clusters, biologists would not be satisfied. 

They would like to know WHAT those functions are. 

If biologists had a priori knowledge (hypothesis) about the function of a gene cluster, 

PubMatrix [5] or LACK [36] could be a useful tool. Given two lists of query terms, PubMa-

trix automatically sent combined queries to PubMed, resulting in a frequency matrix of term 

co-occurrences in MEDLINE. One of the term lists could include the gene names in a clus­

ter, and the other, the keywords of the hypothesis. Thus, a high-scoring matrix would tend to 
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confirm the hypothesis, while a low-scoring one would tend to deny it. LACK took three 

user-provided files as input: a list of differentially regulated genes with functional annota­

tions, a list of all genes on the microarray with functional annotations as background knowl­

edge, and a list of candidate keywords as the hypothesis. Then it detected the statistical sig­

nificance of each keyword for the differentially regulated genes against the background. The 

usefulness of PubMatrix or LACK depends on the a priori hypothesis about the gene cluster, 

which is not always available. Tools without the need for a priori knowledge are therefore 

highly desirable. 

It is expected that the articles related to a gene cluster share many common keywords. 

The task of a functional analysis tool is to detect, extract and display those keywords. Biolo­

gists then could sift through the extracted keywords and grasp the functional properties of the 

cluster. 

Masys et al. [45] extracted MeSH terms and Enzyme Commission (EC) numbers as 

keywords from the <MeshHeadingList> and the <ChemicalList> fields assigned to 

MEDLINE citations which mentioned one or more genes of interest. Keyword frequencies 

were summed across a gene cluster, and aggregated to their parent terms in the MeSH or EC 

hierarchy. The statistical significance of the keywords (including the parent terms) was de­

tected by comparing their frequencies to the corresponding baseline frequencies, which were 

obtained from 500 groups of 100 genes randomly sampled from a set of 37,000 genes. The 

significant keywords were highlighted on the MeSH hierarchy tree or the EC hierarchy tree 

to visualize their relationships. 

MedMeSH Summarizer [33] also took advantage of the MeSH terms. However, in­

stead of comparing the keyword frequencies against a background, it compared and ranked 

keywords by their statistics (mean, variance, entropy...) within the cluster across individual 

genes. For example, a keyword with high mean and low variance of frequency was probably 

a common major topic of the cluster, because the word was associated with the most genes at 

similar high frequencies. On the other hand, a keyword with moderate mean and high vari­

ance might be a minor topic restricted to a subgroup of the cluster. The entropy and the GINI 

index [10] could be good matrices for particularity of a keyword to the cluster, i.e. whether 

the keyword was evenly distributed among the genes. 



www.manaraa.com

7 

Blaschke et al. [54,70] analyzed citations by their words directly. Single words were 

extracted from the citations (stemmed to root and stopwords removed). Two-word terms 

were detected statistically if their observed frequencies were well above the expected random 

co-occurrences. The significance of a keyword (single-word or two-word term) in regard to 

a gene cluster was determined by a z-test against all clusters. Biologists were given a list of 

significant keywords as functional descriptions of a gene cluster. 

These systems share some common drawbacks arising from the underlying assump­

tion that similar expressions imply same functional pathway. First, the fact is that genes in­

volved in different pathways can have similar expression patterns in a particular microarray 

experiment. Second, single gene may participate in several pathways. In either case, the ex­

pected common keywords would be a mixture from different pathways, making them harder 

to interpret. These drawbacks could be avoided if the functional similarities were extracted 

without the assumption. 

1.3.2 Not assuming similar expressions imply same functional pathway 

Functional analysis without this assumption does not use any gene clustering data as 

input. Thus, biologists can compare results from the functional analysis against those from 

expression profiling. This is like looking at a complex object from two different directions in 

order to get its full picture. 

Shatkey et al. [69] developed a theme retrieval system for large-scale gene analysis. 

A theme was essentially a set of MEDLINE citations with similar keyword frequencies. It 

was recursively built in an Expectation Maximization manner from one or more kernel 

documents provided by the user. First, keyword frequencies were counted for the kernel 

documents. The most frequent keywords (excluding stopwords) were then used to retrieve 

more citations from MEDLINE. The new citations were added to the kernel, and keyword 

frequencies recalculated. The process was repeated until some criterion was satisfied, e.g. a 

certain number of citations had been retrieved. After themes were retrieved for all of the 

genes, a pairwise similarity (or distance) metric was defined based on the portion of shared 

citations between two themes (genes). The final results were, for each gene, a theme with its 
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characteristic keywords and a list of the most similar genes. The main limitation of the sys­

tem is its dependence on the kernel documents, which must be provided by the users. For 

microarray experiments involving a large number of genes, the effort and time needed to 

prepare kernel documents is prohibitive. Another limitation is the lack of summarization in 

the results. Given a list of hundreds or even thousands genes (each with a set of kernel 

documents) as input, the system outputs a theme and a list of similar genes for every gene. 

Browsing through hundreds or thousands of themes and lists, it is easy to get lost. 

The semantic gene organizer (SGO) [25] was a proof-of-concept system to find "phy-

logenetic" relationships among genes using functional descriptions instead of sequences. A 

gene was represented as a vector of words. The words were collected from all MEDLINE 

citations cross-referenced to the same gene in three organisms (mouse, rat, human) in Locus-

Link2. To reduce the size of the vectors, SGO utilized the latent semantic indexing (LSI), 

which extracted the most important factors in a matrix. The LSI vectors were then built into 

a hierarchical tree using the popular phylogenetic tree building software PHYLIP [17]. SGO 

is a useful tool to find out whether some genes are functionally closely or remotely related. 

However, it cannot give the actual functional descriptions, because LSI has factored out the 

biological meaning in the original word vectors. 

Chaussabel and Sher [8] reported a "literature profiling" system for mining microar­

ray experiment data. It was based on text clustering. The system collected MEDLINE cita­

tions related to the genes in the analysis. The citations were broken into single words, filter­

ing out ones that were too frequent or too rare. For every unique word, its relative frequency 

(number of citations containing the term / total number of citations) was calculated for each 

gene. The results were tabulated in a two-dimensional matrix, where each row represented a 

gene and each column a word. The matrix was analyzed using a clustering software package 

originally developed for gene-expression profiling. The resulting clustergram showed group­

ings of genes according to patterns of word frequencies. The text clustering-based approach 

overcame the limitations of the theme-based approach. It required only a list of genes as in­

put, eliminating the dependency on kernel documents. The genes were clustered into groups 

2 http://www.ncbi.nlm.nih.gov/projects/LocusLink/ 
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so that it was easier to get an overall picture for a large dataset. However, the choice of the 

clustering algorithm posed some other limitations: 

• The algorithm was originally developed for gene-expression clustering. Gene-expression 

clustering is quite different from text clustering in terms of feature space dimensionality 

and data sparsity. For example, a microarray experiment of 1,000 genes at 10 time points 

generates a 1,000 x 10 matrix. Most of its elements have non-zero values. The total 

number of unique words in MEDLINE citations related to the 1,000 genes can easily ex­

ceed 10,000. For a particular gene, however, the number may be only 500. Hence, we 

are dealing with a 1,000 x 10,000 matrix with most of the elements being zero. The algo­

rithm would perform poorly on this type of matrixes. The authors did aggressive filtering 

to drastically reduce the matrix width (keeping 101 out of 25,000 words). Some useful 

information could be lost in this filtering process. 

• The number of MEDLINE citations related to each of the genes varied dramatically, from 

0 to thousands. Well-studied genes with many citations had counts in a lot of terms and 

tended to dominate the clusters, while newly discovered or less-studied genes with only a 

few counts were easily neglected. Hence, the authors set a lower threshold of 5 citations 

for a gene to be included. The threshold cut out about 40% of the genes in their sample 

dataset, which made the system incapable of drawing a complete picture for all of the 

genes. 

• The system counted only single-word terms. A lot of functional information is captured 

in multiple-word terms and so could not be extracted. For example, the meaning of "red 

blood cell" is lost when the term is broken down into three separate words "red", "cell" 

and "blood", and mixed with hundreds of other terms. The system had little chance of 

discovering a cluster of citations discussing red blood cells. 

• The output was a huge 2D clustergram (number of genes x number of terms). It was not 

very user-friendly in terms of determining cluster boundaries, or checking gene-term rela­

tions (i.e. matching rows and columns in a hundreds x hundreds table). 
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1.4 Hybrid systems 

Since there is functional information available in public genomic databases and litera­

ture, some researchers have developed functional analysis systems to take advantage of both. 

Kiritchenko et al. [37] trained hierarchical text classifiers for GO concepts using the 

human-annotated data in genomic databases as a training set. The classifiers were then used 

to assign GO concepts to un-annotated genes based on their descriptions in the literature. 

Raychaudhuri et al. [60] tried another approach, assigning GO concepts to genes using 

maximum entropy. While these tools are useful, especially for genomic databases, to auto­

matically or semi-automatically annotate new genes, they seem less suitable for providing a 

big picture to help biologists interpret the outcome of a microarray experiment. 

Glenisson et al. [21] provided a big picture by clustering genes based on their text 

representations. The basic idea was the same as that of "literature profiling" [8], with the fol­

lowing differences. 

• Each gene's functional description was collected from the Saccharomyces Genome Data­

base [14] and the SWISS-PROT database [76], supplemented with 20 MEDLINE cita­

tions. 

• The functional descriptions were represented in a predefined vector space of GO con­

cepts. Each vector described the content of the functional descriptions of a gene in terms 

of GO concept occurrences. 

• A document's vector elements were weighted using tfridf (term frequency x inverse 

document frequency), instead of tf only, as in "literature profiling" [8], This weighting 

method takes into account both the importance of a term to the document (using term fre­

quency) and its importance to the entire document set (using inverse document fre­

quency). 

• The clustering algorithm was AT-medoids [34], which generated flat clusters, in contrast to 

the agglomerative neighbor joining used in "literature profiling" which generated hierar­

chical clusters. 
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The authors tested the system with an artificial data set (three groups of a total of 116 

genes hand-picked from three biologically distinct functional pathways in the MIPS data­

base3), I have identified some hidden problems not revealed by the test. 

• Each gene needed input from both genomic databases' annotations and twenty MED­

LINE citations. This requirement is too high even for some genes in the well-studied 

model organisms. One of the genes in the test set did not have enough annotations or ci­

tations, and it was clustered into a wrong group. The applicability of the tool is thus lim­

ited. 

• Text descriptions were mapped into GO vector space. This limits the analysis to the ar­

eas where GO has been developed. In addition, many GO concepts are extremely diffi­

cult to map, for example, GO:0000201 (nuclear translocation of MAPK during cell wall 

biogenesis). 

• The clustering algorithm requires a parameter K, which is the number of clusters. In their 

test, the authors used 3, because they already knew the answer. Given the a priori 

knowledge and the small number of clusters (the chance of a correct random guess was 

high, 33%), their good test run was no surprise. In the real world, however, biologists 

usually don't know the number of clusters beforehand; and the actual number could be 

much higher. 

1.5 Requirements analysis 

Based on the review of the state of the art of functional analysis of microarray ex­

periments, we designed and built a new system, GeneNarrator, which overcomes the limita­

tions of the above-mentioned tools and extends their strengths. Below is the requirements 

analysis for GeneNarrator from five perspectives. 

1. Intended application 

GeneNarrator is intended for functional interpretation of any microarray experiments 

as long as there is some information in the literature about the genes involved. Annotations 

3 http://mips.gsf.de/genre/proj/yeast/ 
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in public genomic databases are not required, since that would limit the application to well-

studied genes in model organisms. A priori knowledge about the genes is not required either. 

With little or no modification, it should be able to analyze proteomic or metabolomic data 

too. 

2. User input 

User input should be as simple as possible, for example, a list of gene names (or pro­

tein or metabolite names). A priori knowledge based input is not required, since such knowl­

edge is not always available. Even if users know something about the genes, preparing that 

knowledge in a usable format (such as kernel documents [69] or keyword lists [5,36]) is a big 

burden for users that we wish to avoid. Expression profiling results are not required either, 

so that the functional analysis is independent of expression profiling. These two independent 

analyses may complement each other and together provide a better picture of the subject. 

3. Source of functional information 

Functional information from MEDLINE citations should be permitted, since they are 

the most complete and up-to-date. Functional annotations in public genomic databases tend 

to cover well-studied genes in model organisms. Dependency on them would make Gene­

Narrator inapplicable to less-studied genes or non-model organisms. Avoiding such inde­

pendency also avoids the concern of annotation errors and delayed updates [4], 

4. Type of analysis 

The analysis should provide a summarized picture of the thousands or even tens of 

thousands of MEDLINE citations collected for a given list of genes. Text clustering seems a 

natural choice, because it can divide a large number of documents into groups based on topic 

differences (similarity in word usage). The clustering solution should avoid some pitfalls 

illustrated in some of the above-reviewed systems. 

• Hierarchical clustering algorithms are more suitable than flat ones. Users usually don't 

know how many clusters should be in the final result beforehand. While inspecting the 

clusters, they might decide to merge some clusters. Merging clusters is much easier for 
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hierarchical clusters than flat clusters. With hierarchical clusters, a merge decision can 

be made locally by considering sibling clusters only. On the other hand, with flat clus­

ters, the decision has to be made after comparing all clusters. 

• The text-clustering algorithm of choice should perform well in high-dimensional vector 

space. It is best to avoid forced transformation from high-dimensional space to low-

dimensional space as done in "literature profiling" [8]. Such transformations tend to lose 

information. 

• Well-studied genes with a lot of citations should not dominate the clustering process, 

with newly discovered or less-studied genes being neglected. 

• Multiple-word terms should be incorporated in text clustering. Many biomedical con­

cepts are multi-word terms. Breaking them down to unrelated single words may ad­

versely affect clustering results, because useful information is lost. 

5. Output of analysis 

An intuitive GUI is necessary to display the analysis results, i.e. hierarchical structure 

of the topics, biological meaning of the topics, how many and what genes are in what topics, 

etc. This is a given in modern software design. 
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Chapter 2 Strategic Design 

2.1 Design overview 

Based on the above requirements analysis, a two-step clustering approach was de­

signed for GeneNarrator to provide biologists with a functional summarization of a microar­

ray experiment utilizing the information from MEDLINE (Fig. 1). The system takes as input 

a user-provided gene list, and automatically queries PubMed for citations mentioning one or 

more of the genes. Gene symbols, official names, synonyms and gene product names could 

all be included to retrieve more relevant citations. The pool of retrieved citations is grouped 

into functional topics using a text-clustering algorithm in step 1. Each gene is then repre­

sented as a topic distribution, a vector of occurrence counts (how many of its citations in 

which topics). Then the 2nd clustering step groups together the genes with similar distribu­

tions. 

Text clustering-based functional genomic analysis is not new in the literature (see 

Chapter 1). However, the two-step clustering design distinguishes GeneNarrator from other 

systems. The rationale of this aspect of the design will be explained in the next section. The 

2nd step: cluster genes 

r  - -

Medline 

output, 
Gene 
List 

input 

1st step: cluster citations 

GeneNarrator 

Citations clustered Genes clustered on 
into topics topic distribution 

Figure 1. Overview of GeneNarrator 
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other two strategic design decisions, the choice of document representation and the choice of 

text clustering algorithm, will be discussed in the rest of the chapter. 

2.2 Two-step vs. one-step clustering design 

The two-step clustering design is one of the distinguishing features of GeneNarrator. 

The two-step design overcomes three main drawbacks of single-step designs: 

• Dominance of well-studied genes over less-studied genes. 

• Dilemma to assign less-studied genes. 

• Difficulty in grasping clusters' biological meanings. 

Some genes are well studied with hundreds or even thousands of hits in MEDLINE, 

while newly discovered or less popular genes may have only a few hits. In a one-step design, 

each gene is represented by all of its citations combined. Thus genes with a lot of citations 

are analogous to "thick books," while genes with only a few citations are more like "short 

memos." When the thick books are compared directly against the short memos, the thick 

books inevitably dominate. This was vividly illustrated in Fig. 2 of [8]. In the two-step de­

sign, however, such dominance can be avoided because citations for a gene are not bundled 

together. Instead, all citations from all genes are pooled together, thus each citation has the 

same weight in determining topics, regardless of its origin from a thick book or a short 

memo. 

Many genes, especially well-studied ones, participate in several biological processes 

(pathways). Their text representations are therefore mixed with keywords from different 

pathways, just like thick books usually have different chapters covering different topics. In a 

one-step design, therefore, an individual topic cluster dominated by well-studied genes may 

discuss several pathways; and different topic clusters may overlap partially in some path­

ways. The overlap can make assigning a less-studied gene a dilemma, if it is discussed in the 

context of a single pathway. On one hand, it may be assigned to any of the overlapping clus­

ters, because the pathway is discussed in all of them. On the other hand, it is wrong to assign 

it to any of the clusters, because the membership in a multi-pathway cluster requires cover­

age in more than one pathways. In the two-step approach, this is less likely a problem. Text 

clustering is expected to group the citations into "pure" topics discussing individual path­
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ways, if an appropriate clustering algorithm is used. Assigning less-studied genes to individ­

ual pathways should not be a problem at all. Well-studied genes can be assigned to many 

topics simultaneously. 

Finally, both approaches must provide a list of representative keywords and/or sen­

tences for each topic cluster to make it biologically meaningful. From the users' point of 

view, it would be much easier to grasp the biological meaning if the keywords were from a 

single pathway rather than a mix of several pathways. Thus, the two-step design is inher­

ently superior to the one-step design in this aspect. 

2.3 Document representation 

Before any clustering algorithm can be applied to a document set, the documents have 

to be transformed into some type of abstracted representation. The most widely used docu­

ment representation in text clustering, as well as in other text mining tasks such as text classi­

fication and document retrieval, is the vector space model [70]. Given a set of m documents, 

the model encodes a document di as a vector in an n-dimensional vocabulary space 

d, = (wil,wi2,...wij,...win), i = 1,2,...,m 

where w,y is the weight of the /h entry in the vocabulary in document di. The actual order of 

the vocabulary entries is not important. Variations exist for different definitions of the vo­

cabulary and different weighting methods. The weighting method is closely tied to the clus­

tering algorithm, so its discussion will be deferred to the next section. The rest of this section 

will be devoted to the vocabulary. 

The most popular vocabulary approach is called "bag of words" (BOW), which, as 

the name suggests, includes the unique words in the document set [6,8,9,11,12,16,22,24,27-

30,41,53,65,66,72,75,77,78], Stopwords are usually excluded; and optionally the words are 

stemmed to their roots (e.g. suffixes removed). Some filtering or feature selection methods 

have been investigated in order to reduce the dimensionality of the vocabulary space [6,8,11]. 

Another choice of the vector space is a predefined controlled vocabulary (concept-based rep­

resentation), such as the Medical Subject Heading (MeSH) [74], Gene Ontology (GO) [21], 

or other ad hoc ontologies [26]. 
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It is obvious that the vector space model doesn't capture information in a document 

present in word sequences and grammar structures. Could the omission of this information 

adversely affect the results of text clustering? Observe that text information is captured in 

several levels. 

• The single term level, where the information is intrinsic to the word, e.g. "insulin", 

"cell", etc. 

• The ontology level, dealing with implicit relationships between concepts such as syn­

onymous terms or related concepts. For example, a paper discussing "baseball" and a 

paper discussing "soccer" might be grouped together under "sports." 

• The phrase/sentence level, dealing with explicit interactions between terms where 

grammar structures and word orders are important. For example, "insulin decreases 

blood sugar," "insulin-induced decrease of blood sugar," or "red blood cell." 

• The logic flow level, including paragraphs, sections, chapters, etc. 

Not all information is needed for text clustering, where the interest is more in group­

ing documents based on concepts, rather than on the interactions among the concepts. 

Hence, the first two levels of text information seem sufficient for text clustering. 

A BOW-based representation can capture the information in level 1, while a concept-

based representation can also handle level 2. It is therefore natural to hypothesize that a con­

cept-based approach could outperform a BOW-based one. There are three pre-requisites to 

taking full advantage of a concept-based representation: 

1. an ontology that encodes background knowledge about the domain of interest (ge­

nomics, in this case); 

2. a natural language processing algorithm that efficiently and effectively maps free text 

to ontology concepts; and 

3. a text clustering algorithm that can effectively utilize the ontology. 

Given the state of the art in biomedical ontology design, natural language processing 

and text clustering, there is no guarantee that one representation will be better than the other. 

It is therefore intriguing to experiment with both approaches and compare them. 



www.manaraa.com

18 

2.4 Choice of text clustering algorithm 

The importance of an appropriate text clustering algorithm for the success of Gene­

Narrator cannot be overemphasized. There are many types of clustering algorithms with 

many variations for diversified applications (for a review, see [31]). Some algorithms were 

originally developed for other purposes, and later tried for text clustering. They fall into 

three categories: (1) fc-means and its variations [21,22,26]; (2) variations of agglomerative 

hierarchical clustering [8,22]; and (3) self-organizing maps (SOM) and variations [27-30,38-

40]. There is also an algorithm specially developed for text clustering: the cluster-abstraction 

model (CAM) [24], 

Despite their successful application in many other areas, distance- or similarity-based 

algorithms (&-means, agglomerative hierarchical clustering and SOM) suffer from problems 

due to high dimensionality when applied to text clustering [26]. All of these algorithms con­

sist of steps that iteratively find nearest neighbors. In a high dimensional space, however, 

numerous data points can appear to be at the same distance from a given point [7,23]. The 

"nearest neighbor" idea is thus less meaningful in the high dimensional context. 

The Cluster-Abstraction Model (CAM) [24] avoids the calculation of distance or 

similarity. A CAM consists of a vocabulary and many topics organized in a hierarchical tree. 

Each topic is defined by a set of probabilities (Pt). Each probability is the likelihood of the 

topic containing a certain word in the vocabulary. Each leaf topic defines a unique route 

from the leaf to the root of the tree. The topics along the route are considered as different 

abstraction levels. The closer to the root, the higher the abstraction level. There is a docu­

ment bin for each route. The bin is also defined with a set of probabilities (Pb). Each prob­

ability is the likelihood of the bin containing documents from a certain abstraction level. Fi­

nally, the entire model has a set of probabilities (Pm), each of which is the likelihood of the 

model containing documents from a certain bin. Given a model, a set of documents can be 

generated by iteratively picking a bin according to Pm, picking an abstraction level (topic) 

according to Pb given the bin, and producing words according to Pt given the topic. Cluster­

ing a set of documents is equivalent to finding a hierarchical topic structure and all of the 

probabilities, which can generate the documents with the highest likelihood. Compared to 
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other distance-based algorithms, especially agglomerative clustering methods, CAM has the 

following advantages: 

• insensitivity to term weighting methods and distance (similarity) definitions; 

• a statistically sound foundation; 

• multiple levels of text clustering; 

• representative keywords for topics (words with the highest probabilities); and 

• efficient model fitting by annealed expectation maximization [64]. 

It was thus not difficult to decide on CAM as the choice of a text clustering algorithm 

for GeneNarrator. 
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Chapter 3 BOW-Based System: GeneNarrator I 

3.1 Architectural overview of GeneNarrator I 

GeneNarrator I consists of six modules: DocBuilder, LongBOW, CrossBOW, Gene-

Smith, ArrowSmith, and BOWviewer (Fig. 2). The core text clustering module (CrossBOW) 

was modified from the "bow" toolkit, an open-source library for statistical language model­

ing, text retrieval, classification, and clustering [46]. The other modules were developed 

around CrossBOW to prepare its input and process its output. The DocBuilder module re­

trieves MEDLINE citations that are related to at least one of the user-provided genes. The 

LongBOW module performs several pre-processing tasks on the citations including discard­

ing stopwords, stemming, and detecting multiple-word terms. The CrossBOW module ap­

plies the CAM algorithm to the citations, and groups them into hierarchical functional topics. 

The ArrowSmith module extracts representative keywords from CrossBOW's output, and 

finds high-scoring sentences and citations for the topics in order to help users interpret their 

biological meanings. The more keywords a sentence or citation contains, the higher it scores. 

The GeneSmith module maps each gene into a distribution across the topics, and groups the 

genes with similar distributions. The BOWviewer module is a GUI for navigating the hierar­

chical topics, browsing the representative keywords, sentences and citations, and comparing 

GeneSmith Lon 

TP-I CrossBOW BOWviewer 

ArrowSmith DocBuilder Functional 
topics 

GeneNarrator 

Gene 
groups 

MEDLINE 

Gene 
list 

Figure 2. Architecture overview of GeneNarrator I 
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the genes' or gene groups' topic distributions. All modules were implemented in Java, ex­

cept CrossBOW (which is in C). 

3.2 Detailed description of individual modules 

3.2.1 DocBuilder 

Table 1. Required and optional input/output of DocBuilder 

Input A file containing a list of gene names. Synonyms and gene product names can also be included in 
the same line. 

Output • A directory of MEDLINE citations in plain text format. Each file contains one citation. The file­
name is the citation's PMID, and the file content is the citation's title and abstract. 

• A gene-PMID mapping file to keep track of which citation belongs to which gene. 
Options • A user may specify an upper limit of the number of citations retrieved for each gene. The option 

is designed to prevent well-studied genes from dominating the functional topics. 
• A user may specify a species name to filter out citations not related to the species. 

Given a file containing a list of genes (1 gene/line), DocBuilder retrieves MEDLINE 

citations related to each of the genes via Entrez Programming Utilities (eUtilities) [51]. It 

consists of four sub-modules: a querier, a sampler, a fetcher and a parser. The querier em­

beds a gene name (together with its synonyms and product names if also provided) into a 

query, and sends the query to PubMed using eUtilities' ESearch function. PubMed returns a 

list of PMIDs. A user may set an upper limit for the number of PMIDs to be used in the fol­

lowing steps. If the number of returned PMIDs exceeds the upper limit, the sampler draws a 

random sample from the list. The returned or sampled PMIDs are recorded in the gene-

PMID mapping file for later use. The fetcher then retrieves the PMIDs' full citations from 

PubMed using eUtilities' EFetch function. Finally, the parser extracts the titles and the ab­

stracts from the retrieved citations, and writes them to plain text files. More details about the 

four sub-modules can be found in [15]. 

3.2.2 LongBOW 
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Table 2. Required and optional input/output of LongBOW 

Input The MEDLINE citations in plain text format (from DocBuilder). 
Output Modified citations: 

• Stopwords removed. 
• Word stemmed (suffixes removed). 
• Multiple-word terms detected. 

Options • A user may provide his/her own stopword list. 
• Sensitivity of multiple-word term detection is adjustable. 

The LongBOW module preprocesses the MEDLINE citations in order to get better 

clustering results. The modifications include the following. 

• Removal of stopwords, such as "that," "is," "you," "of," etc. A user may provide 

his/her own stopword list to replace the default stopword list. 

• Stemming (suffix stripping). For example, "regulation," "regulating," "regulator," and 

"regulates" are all stemmed to "régulât." The stemming method is a Java implementa­

tion of the Porter stemming algorithm [56]. 

• Detection and labeling of multiple-word terms (MWTs). 

Detection and labeling of MWTs is done in three steps (all of the citations are 

scanned three times). In the first pass, along with performing stopword removal and stem­

ming, document frequencies (df. number of documents containing a specific term) and term 

frequencies (tf : number of total appearances of a specific term in the whole document set) of 

all unique single-word terms (SWTs) are counted. The total number of words (including 

stopwords and punctuations) is also recorded. After the first pass, a cut-off value of df is 

used to determine the "significant" SWTs, i.e. those with a df above the threshold. 

In the second pass, unique double-word terms (DWTs) are counted. A DWT is de­

fined as two consecutive SWTs without any stopwords or punctuation in between; both 

SWTs must be significant (above the df threshold). A DWT's observed count is tested 

against a null hypothesis, which assumes that two SWTs are next to each other by chance. 

The test is similar to the "t-test" of collocations described in [43]. Briefly, suppose the oc­

currences of single-word term wi in the entire document set is n\, that of w2 is ri2, the total 

number of words (including stopwords and punctuations) in the document set is N, and the 

observed double-word term w\_w% is n0bs- Then the probability of an occurrence of w\ being 
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followed by w 2  under the null hypothesis is given by p  =  n 2 / N ,  and the expected occur­

rences of w\_w2 is nexp = nxp = nxn2 / N. We can construct an approximate binomial test by 

z = — j =  

V n i  P Q - ~ P )  

and reject the null hypothesis for large enough values of z. The DWTs that reject the null 

hypothesis are considered as significant DWTs. 

In the third pass, significant DWTs are evaluated in the context of individual cita­

tions. A significant DWT is qualified only if its two contained SWTs are mentioned a simi­

lar number of times in a particular citation. For example, an occurrence of "cell cycle" would 

not be qualified as a DWT if the word "ce//" was mentioned 10 times in a citation, while the 

word "cycle" only appeared once. Even though "cell cycle" might appear more frequently 

than expected by chance in the entire document set, it did not appear to be a major subject in 

the particular citation. Formally, given a significant DWT "wi w2" with term frequencies tf\ 

and tf2 in the citation, and a predefined threshold a, a > 1, the DWT is qualified if and only if 

\ l a < t f x l t f 2  < a .  

MWTs are detected if DWTs are chained together. Upon detecting a qualified DWT, 

LongBOW replaces the space with an underscore character (e.g. cell_cycle). The trick is to 

enable the CrossBOW module to treat the DWT as a single word. 

3.2.3 CrossBOW 

Table 3. Required and optional input/output of CrossBOW 

Input Modified MEDLINE citations (from LongBOW). 
Output • Hierarchical clusters of the citations. 

• Representative terms for each of the clusters. 
Options • A user may specify the branching factor and the maximum level of 

branching to control the number of clusters desired. 
• The number of representative terms can be specified. 

The CrossBOW module was modified from the "bow" toolkit, a library for statistical 

language modeling, text retrieval, classification, and clustering [46]. CrossBOW is its text 

clustering component, which implements the Cluster-Abstraction Model algorithm described 
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in Chapter 2. It takes a set of documents (plain text files) as input, and clusters them into a 

hierarchical topic tree. Each document is assigned to one and only one of the leaf nodes (top­

ics). Each topic is represented as a list of the most probable keywords. The topology of the 

tree (i.e. branching factors and maximum depth) can be specified as command line options. 

Many other command line options are available to meet various user needs. More details 

about the command line options can be found in its online manual. The modifications intro­

duced for GeneNarrator included the following. 

• Recognition of multi-word terms labeled by LongBOW. The default setting strips and 

discards the underscore characters, so we overrode the default. 

• Addition of a command line option to change the number of topic keywords in the output. 

3.2.4 ArrowSmith 

Table 4. Required and optional input/output of ArrowSmith 

Input • Hierarchical topics (from CrossBOW). 
• Representative keywords for the topics (from CrossBOW). 
• The original citations (from DocBuilder). 

Output • Representative sentences and citations for each of the topics. 
Options • Scoring methods for representative terms. 

Given the hierarchical topics and the representative topic keywords generated by 

CrossBOW, the ArrowSmith module scores the sentences and the citations within a topic, 

and picks those with the highest scores. According the scoring method used, each represen­

tative keyword is assigned a score. For example, the binary scoring method gives all repre­

sentative keywords a score of one. Other scoring methods may assign different scores to dif­

ferent keywords based on their probabilities or ranks. A sentence's score is the sum of its 

contained keywords' scores, and a citation's score is the sum of its sentences' scores. The 

representative keywords, and the highest-scored sentences and citations, define the inferred 

biological meaning of each topic. 
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3.2.5 GeneSmith 

Table 5. Required and optional input/output of GeneSmith 

Input • Hierarchical topics (from CrossBOW). 
• Gene-PMID mapping file (from DocBuilder). 

Output • Distribution of a gene's citations among the topics. 
• Gene groups with similar topic distributions. 

Options • A user may pick the clustering method to group the genes. 
• A user may specify the number of gene groups desired. 

The GeneSmith module converts gene-to-citation mappings to a gene-to-topic distri­

bution by straightforwardly counting. It further clusters genes based on their topic distribu­

tion. The choice of clustering algorithms is &-means or expectation maximization (EM) from 

the Weka machine-learning workbench [19]. 

3.2.6 BOWviewer 

Table 6. Required and optional input/output of BOWviewer 

Input • Representative topic keywords (from CrossBOW). 
• Representative sentences and citations for the topics (from ArrowSmith). 
• Distribution of a gene's citations among the topics (from GeneSmith). 
• Gene groups with similar topic distributions (from GeneSmith). 

Output Screen displays. 
Options None 

The BOWviewer module (Fig. 3) is a graphical user interface (GUI) for browsing the 

final analysis results: the topic hierarchy, the representative topic keywords, high-scoring 

sentences and citations for each topic, the genes' topic distributions, and the gene groups. 

Users can easily navigate through the hierarchical topic tree; browse topic keywords, high-

scoring sentences and citations; and annotate the topics with biologically meaningful com­

ments. It is also intuitive to check how many genes contribute to a topic of interest, or how a 

particular gene distributes among the topics. 
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Chapter 4 Evaluation of GeneNarrator I 

Since GeneNarrator takes a two-step clustering approach, it would be useful to see 

how effective GeneNarrator performed on each step. To achieve this purpose, real-world 

microarray experiment data would be difficult to use. Even though GeneNarrator could clus­

ter document topics and search for functional groups for the genes that are significantly regu­

lated in the experiment, there is no "gold standard" to compare the results with. Thus we 

don't know how many "true" groups or topics are present. Therefore, a handpicked list of 

genes from several pathways of a model organism was used for evaluation. The first section 

in this chapter is a review of the dataset. A brief review of the methods and indices for 

evaluating clustering algorithms will be given in the second section. In section 3, a new met­

ric, normalized mutual information, is introduced. Finally, in section 4, the metric will be 

applied to GeneNarrator's analysis results. 

4.1 The gold standard gene list and document set 

The evaluation gene list contains 155 yeast genes manually selected from ten path­

ways in the comprehensive yeast genome database [48]. The gene symbols and their syno­

nyms are listed in appendix A. The gene list was fed into DocBuilder; and 2819 unique 

PMIDs were returned (Table 7). The upper limit of PMIDs for a single gene was set at 50. 

Please note that there were some overlaps among the pathways both at the gene level and at 

the citation level. Care was taken in picking the pathways so that the overlap was kept at an 

acceptable low level, though some overlap was unavoidable. The higher degree of overlap at 

the citation level was expected, since it is common for papers to discuss several pathways. 

To build a more clearly separated document set is technically difficult, and its evaluation 

suitability is also questionable because it tends to over-estimate the effectiveness of a text-

clustering algorithm. 
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Table 7. Handpicked genes from the Comprehensive Yeast Genome Database 

and the set of citations (PMIDs) retrieved from PubMed 

ID Pathway # of genes # of PMIDs 
1 Sulfur amino acid biosynthesis 14 263 
2 Biosynthesis of sphingolipids 15 230 
3 Respiratory chain 40 643 
4 Pyrimidine metabolic pathway 8 257 
5 Krebs tricarboxylic acid cycle 15 209 
6 Cell cycle control of DNA replication 24 1102 
7 Pre-rRNA processing pathway 24 390 
8 The ubiquitin-mediated proteolytic pathway 7 138 
9 Early steps of protein translocation into the endoplasmatic reticulum 5 190 
10 Vesicular protein transport in exo- and endocytosis 7 198 

Total 159 3620 
Unique total 155 2819 

4.2 Evaluating clustering: literature review 

Evaluation of clustering, an unsupervised machine-learning task, is more difficult 

than classification, a supervised machine-learning task. While the accuracy (or error rate) of 

classification is widely used for evaluating classifiers, there are no commonly accepted ap­

proaches for evaluating clustering. This is illustrated in Table 8, where the clustering evalua­

tion methods used in some papers are listed. (The list is by no means exhaustive.) Different 

methods were used not only in different papers but also in the same papers, which indicated 

that no one method alone is trusted to evaluate a clustering method. The methods can be 

categorized into three strategies: (i) indices measuring agreement between two clustering re­

sults or a clustering result against a "gold standard;" (ii) metrics measuring cluster quality; 

and (iii) domain experts' or readers' subjective judgment. These are discussed further in the 

following paragraphs. 

4.2.1 Subjective judgment 

Subjective judgment may be explicit domain experts' opinions. Alternatively, the au­

thors may simply present their experimental results, and let the readers determine whether the 

results make sense or not. This was the most popular method in our survey (Table 8); and 

sometimes it was the only approach used. Subjective judgment may be an important compo­
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nent of the entire evaluation, since it is the end users who finally determine whether a tool is 

truly useful or not. However, it is not a good choice as a sole and formal evaluation method 

simply because it is inconsistent and influenced by many uncontrollable factors. Different 

experts may give completely different opinions. Even the same expert may change his/her 

mind over time. It is also impossible to compare algorithms from different studies solely 

based on subjective judgment. 

Table 8. An incomplete list of evaluation methods for clustering in the literature 

Ref. 
Agreement Measures Quality Measures Subj. 

Ref. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Steinbach 2000 X X 

Goldszmidt 1998 X 

Hung 2004a, b X X 

Struble 2004 X X 

Beil 2002 X 

Hotho 2001 X X X 

Schutze 1997 X 

Iliopoulos 2001 X 

Hofmann 1999 X 

Glenisson 2001 X X X X 

Chaussabel 2002 X 

Meila 2002 X 

Saporta 2002 X X X 

Denoeud 2004 X X X X X 

1: Weighted average of entropy 
2: F-measure 
3: Error rate/accuracy 
4: Precision 
5: Variation of information 
6: k-NN learnability 

7: (Adjusted) Rand index 
8: Mac Nemar's test 
9:Jaccard index 
10: Transfer distance 
11: Wallace index 
12: Leman index 

13: Average quantization error 
14: Agglomerative coefficient 
15: Silhouette coefficient 
16: Mean squared error 
17: Subjective judgment 

4.2.2 Cluster quality measures 

It seems natural to evaluate a clustering algorithm based on metrics that measure clus­

ter quality. Clusters are of high quality if elements within a cluster are close to each other, 

while the distance between elements from different clusters is far apart. There are several 

metrics measuring cluster quality. Some of them are dependent on the underlying clustering 

algorithms, such as the average quantization error (AQE) for self-organizing maps (SOMs) 

[27-30], and the agglomerative coefficient for hierarchical algorithm [74]; while others are 

independent, such as the Silhouette coefficient (SC) [21,26] and the mean squared error [26]. 

SC can serve as a good example for this type of metrics (Fig. 4). 
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Let D be a set of documents and {Di, D%, ... Dk} a partition of D. The distance of a 

d o c u m e n t  d e  D  t o  a  c l u s t e r  D ,  i s  t h e  m e a n  d i s t a n c e  f r o m  d  t o  t h e  d o c u m e n t s  p  i n  D f .  

diS,<4,D^f'd-P) 

\ D i \  

Let a(d) be the distance of d to its assigned cluster, and b(d) the distance of d to its 

nearest neighboring cluster: 

a ( d )  =  d i s t ( d , D f ) ,  d e D i  

b(d) = (dist(d >•Di ) > 

The silhouette s(d) of document d and the silhouette coefficient SC of D are then de­

fined as 

b ( d ) - a ( d )  
s ( d )  =  

m a x { b ( d ) , a ( d ) }  

rr 

Intuitively speaking, SC measures on average whether a document is closer to its own 

cluster's center, or to its nearest neighboring cluster's center. It is bounded between 0 and 1 

for entire D, although negative s(d) might be taken by some outliers. The interpretation of 

the value is shown in Fig. 4. 

Since it is defined in terms of document distance, SC suffers from high dimensional­

ity like distance/similarity-based clustering algorithms. In high dimensional space, data 

points appear next to each other at the same distances [7,23]. Hotho et al. developed an on­

tology-based text clustering system, observing that the SC dropped below 0.25 (not sepa-

SC Separation 

0
 

Lj
 

1 o
 

Excellent separation 

0.5-0.7 Clearly separated 

0.25-0.5 Separated with noise 

<0.25 Not separated 

Figure 4. Silhouette coefficient 
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rated) whenever dimensionality was above 30. This issue is not special to SC, but may hap­

pen to any distance- or similarity-based metrics. 

In high dimensional space, it is even possible for a "gold standard" document set to 

fall into the "not separated" range, which makes the cluster quality measures completely use­

less. Compared to a gold standard, the "absolute" quality of a clustering solution does not 

matter. What's important is how well the clustering result agrees with the original partition. 

4.2.3 Agreement measures 

Although a plethora of agreement metrics and indices have been proposed and/or 

tried in the literature, none of them seem to have gained popularity among researchers (Table 

8). They can be further categorized into three subgroups: (i) metrics adopted from classifica­

tion evaluation; (ii) member relation-based indices; and (iii) information-based metrics. 

4.2.3.1 Metrics adopted from classification evaluation 

Evaluating text classification is fairly straightforward. Given a set of documents, a 

classifier's task is to assign to each document one or more predefined class labels. Evaluat­

ing the classifier is to see whether the assigned class labels agree with the original known la­

bels. Classification accuracy and error rate, as well as their derivations (e.g. precision, recall 

and F-measure), are widely accepted metrics. It is not surprising that some of them were 

adopted, with or without modification, into the closely related unsupervised machine-

learning task, of which text clustering is an example [21,22,27-30,68,72], 

A text-clustering algorithm tries to partition a document set, i.e. divide it into mutu­

ally exclusive subgroups. The number of clusters (partitions or subgroups) and their mem­

bership contents are up to the algorithm. In some cases, such as the family of fc-means algo­

rithms, the number of clusters is "guessed" by the user as an input parameter. Comparing the 

partition to the original class labels (which may or may not be a partition) is significantly dif­

ferent from the situation of evaluating classification. Hence, adopting the classification met­

rics to text clustering is questionable for at least two reasons. 

First, if the number of clusters is more than the number of classes, some clusters have 

to be labeled as wrong and get penalized, no matter how much sense the extra clusters make. 
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This is unfair to the algorithms in the fc-means family, since they are instructed to generate a 

particular number of clusters and get penalized for doing that because of users' wrong 

guesses. Hence, an ideal metric should be able to tolerate cluster numbers different from the 

number of classes. 

Second, a clustering algorithm is likely to strip a small proportion out of a class, and 

put it in a separate cluster or mix it into another class. From clustering's point of view, this is 

not too bad, much better than scattering the proportion into many other classes. The algo­

rithm should get some penalty for separating the proportion from the main class, but still get 

some partial credit for keeping the proportion together. However, none of the classification 

metrics gives this type of partial credit. Any documents clustered apart from their main 

classes are penalized to the same extent. 

4.2.3.2 Member relation-based indices 

Rand [58] proposed an objective criteria (the Rand index) to evaluate clustering 

methods. Let D be a set of n documents, and P and Q be two partitions on D. A pair of 

documents % and y (x, y e D) can be joined or separated in P and Q. Let further r, s,u and v 

be the number of pairs related in P and Q as depicted in the table below 

Joined in P Separated in P 
Joined in Q r V 

Separated in Q u s 

The Rand inc 

Q agree: 

ex is then defined as the percentage of document pairs for which P and 

a(f,G) = 
r + s r + s 

r  +  s +  u  +  v n ( n - 1)/2 

While making sense, Rand index has drawbacks [47]. First, its baseline is not zero, 

since random guess may still make some pairs simultaneously joined or separated. This re­

duces the index's useful range to approximately (0.6, 1] [18]. Second, the baseline is a func­

tion of P and Q, and has to be recomputed for every pair of P and Q [47]. Hence, many 

variations of the index (Table 9) have been proposed in the literature for various considera­

tions (for review, see [13,67]). 
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However, it seems that none of these variations was a silver bullet. Saporta and 

Youness [67] experimented with Rand, Mac Nemar and Jaccard's indices on 1,000 clustering 

simulations, in order to find out the distributional characteristics of the indices. Although 

they expected a deviation from the normal distribution since the simulations were not inde­

pendent, they were still surprised at the observed bimodal distributions. They commented 

that "agreement measures are only one of the many facets of comparing partitions." This 

was another way to say, please do not put your faith on these indices. 

Table 9. Variations of Rand index 

Index Definition Rationale 

Corrected 
Rand index 

m p , Q ) =  r ' f < p i r )
l ,  

M a x ( r )  -  E x p ( r )  
Exp(r): expectation of r 
Max(r): maximum of r 

Random guessing may make some pairs joined simul­
taneously in P and Q. They should be subtracted from 
the index. 

Jaccard's 
index 

J ( P , Q )  =  — - —  
r + u + v 

It is the joined documents that define a partition (i.e., 
clustering). Separation is just a by-product. 

Wallace 
index 

W ( P , Q ) -  ,  r  

^ ] ( r  +  u ) ( r  +  v )  

Similar to Jaccard's index, except normalized by the 
geometric mean of joined pairs in P and Q. 

Lerman 
index 

Var(r): variance of r 

Simultaneously joined pairs corrected for its expecta­
tion, and normalized to the standard deviation. 

Mac Ne­
mar's test 

M c ( P ,  Q )  -  J i Z Z =  
V « + v  

A non-parametric statistical test to check equality of 
proportions of disagreement. 

Denoeud et al. also criticized these indices, promoting the transform distance origi­

nally proposed by Régnier in 1964 [13]. The transform distance between two partitions is 

defined as the minimum number of steps to transform one partition to the other. The same 

transform distance may result in different index values and vice versa. For example, suppose 

one moves a single document from one cluster to another. The transform distance is always 

1, regardless of the sizes of the source/target clusters. However, those indices are sensitive to 

the cluster sizes, since moving a document from a larger to a smaller cluster breaks more si­

multaneously joined pairs, resulting in smaller index values. There is no compelling reason 

why one approach should be favored over the other. In addition, transform distance has its 

own drawback, i.e. it is computationally expensive [13]. 
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Although the critiques and the controversies regarding the indices and transform dis­

tance may explain (at least in part) the diversity of evaluation approaches for text clustering, 

they do not rule out using several metrics with well-understood semantics regarding parti­

tions and their comparison provided by information theory. 

4.2.3.3 Information-based metrics 

The (Shannon) entropy of a discrete variable X measures its average information con­

tent in terms of bits. It is defined as 

#(X) = -2%f(z)log,PW 

where P(x) is the probability of X being in state x. Applying it to a set of documents D com­

posed from m classes such that D = {D\, D2, ... Dm}, we have the entropy of D as 

H ( D )  equals zero when all documents are from the same class, and it reaches a maxi­

mum value when the set is evenly mixed. It is fairly straightforward to apply this measure to 

a clustering result. One simply averages the clusters' entropies weighted by the clusters' 

sizes. This was the approach used in [6,73]. 

Although it measures the "cleanness" of a clustering result, the average entropy is not 

a good indicator of the effectiveness of its underlying algorithm. To evaluate the effective­

ness, we need to measure the "agreement" between the clustering result and the original 

classes, not the "cleanness" of the result. The "cleanness" is just a by-product of the "agree­

ment;" it is a required condition, but not a sufficient one. An example may illustrate the idea 

more clearly. Suppose we have a set of documents from 3 classes (4, 400, and 4 from each 

class respectively). A random-guess clusterer is used to divide the set into 4 clusters. Each 

cluster might have one document from the first class, 100 from the second, and one from the 

third. The clusters are "clean" (100 out of 102 documents from the same class), so their aver­

age is also clean. However, there is no "agreement" at all! 

The "cleanness" measure fails in the above example because the original document 

set is already "clean." The failure is the result of looking at the clustering from only one di­

rection: whether the clusters are clean or not. To see agreement, we also have to look from 
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Figure 5. Entropy and mutual information 

the other direction: whether the classes are clean or not. If we have both clean clusters and 

clean classes, then we have an agreement. Although we could calculate an average entropy 

across the clusters and another across the classes, this is not necessary because mutual infor­

mation can capture exactly what we are looking for. 

4.3 Normalized mutual information 

The mutual information I between two discrete variables X and Y is defined as 

7(%,y)^-^^f(x,y)log: 
XEX YEY PWf(y) 

Intuitively speaking (Fig. 5), mutual information measures the overlap between the 

two variables, the information in X about Y and vice versa. Put in the context of clustering 

evaluation, the mutual information of a clustering D = {D„ 1 < i < &} and its original class 

labeling C = {C/, 1 <j < m) is 

m k n, 
7(C,D) = -%%. 

; =>  H  L M \ C J \  

log: 
I A  I  •  I C ,  

where n ,j is the number of elements in cluster i  with class label j .  I ( C ,  D )  can be interpreted 

as the information about an element's class label if its cluster membership is known. This is 

very close to the agreement measure we are looking for, except that one piece is still missing. 

Since it measures the absolute size of the overlap, two large shapes may have an overlap 

smaller in proportion yet bigger in size than two small shapes. Hence, we further define the 

normalized mutual information (NMI) of C and D 
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N M I ( C , D )  =  ,  
min { H ( C ) , H ( D ) }  

as a measure of agreement between the clustering D and its original labeling C. The NMI 

has the following desirable properties. 

• It is bounded by [0,1]. 

• Its baseline is stable, and not sensitive to the size of document set, the number of 

classes, the number of clusters, etc. 

• Random guesses get zero credit. 

• Clustering with more clusters than there are classes can still get a perfect score (1.0) as 

long as each cluster contains only elements of one class. 

4.4 Evaluating GeneNarrator I 

Since NMI is defined on two partitions, it cannot be used directly on the gold stan­

dard datasets constructed above, the yeast gene list and the citation set. Neither is a partition 

because some elements are in more than one class. A work-around trick is to make them 

pseudo-partitions by duplicating those elements and assigning a copy to each of their con­

taining classes. Of course, no clustering algorithm could be expected to differentiate those 

duplicated elements; and they will be assigned to the same cluster, resulting in mixing of the 

classes to some extent. Therefore, for a non-partitionable dataset, perfect clustering is not 

achievable, i.e., NMI < 1. The best achievable NMI for such a dataset can be estimated using 

simulated clustering, in which the non-duplicated elements keep their class labels and dupli­

cate elements are assigned to the same class (randomly picked from the classes they actually 

belong to). 

We estimated the best possible NMIs with five simulated clusterings for the gold 

standard gene list and the gold standard citation set (Table 10). 

Table 10. Best NMIs achievable for the gold standard datasets 

Agreement with the standard (NMI: mean ± SD) 
Gene list 0.882 ± 0.005 
Citation set 0.843 ± 0.001 
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The effectiveness of GeneNarrator I was evaluated with five trials on the gold stan­

dard datasets. The command line options and the results are listed in Table 11. The agree­

ments with the standard gene list and the citation set were not impressive, only 0.62 for the 

Is-step clustering and 0.52 for the 2nd-step clustering, respectively (only 74% and 59% out 

of the best achievable). The result was not surprising when we looked at the consistency of 

the lst-step clustering among the five trials (only 0.67 ± 0.02). If the very first step of the 

analysis cannot even produce consistent results, there is little to expect for the subsequent 

steps. 

Since BOW-based GeneNarrator I did not produce especially high results in the 

evaluation, the question of whether the concept-based GeneNarrator II could do a better job 

became the basis for the next experiment. 

Table 11. Evaluation of GeneNarrator I on the gold standard datasets (5 trials) 

lst-Step (Text) clustering 2nd-Step (Gene) Clustering 

Command line 
parameters 

LongBOW: 
. SWT df cut-off = 0.05 
• DWT p value = 0.025 
• DWT ratio = 3.0 
• minimum word length = 2 
• default stopword lists 
CrossBOW: 
• branch factor = 2 
• maximum branch depth = 4 

GeneSmith: 
• algorithm = &-means 
. k= 15 

Consistency 0.67 ± 0.02 0.52 ± 0.04 
Agreement 0.62 ±0.01 0.52 ±0.08 
% Achieved 74% 59% 
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Chapter 5 Concept-based text clustering 

Everyday experience tells us that background knowledge plays a role in manual 

grouping of documents. For example, documents about red blood cells should be grouped 

together with those discussing erythrocytes, since they are exact synonyms. It is also very 

common for a human reader to group closely related subjects under a bigger topic, e.g. to put 

documents about subjects apple, orange or peach under the topic fruit. Such knowledge is 

usually not explicitly stated in the documents, but widely accepted among the domain ex­

perts, and in some domains captured to some extent in the format of ontologies, e.g. the uni­

fied medical language system (UMLS) [50], the medical subject headings (MeSH) [49], the 

gene ontology (GO) [3,20,42] and the open biological ontologies [1] in the biomedical do­

main. 

As discussed in the chapter 2, BOW-based text representations are incapable of cap­

turing ontological information. Hence there is no way for BOW-based text clustering tools to 

take advantage of this background knowledge. For example, the words apple, orange and 

peach do not give a BOW-based algorithm any hint that they belong together under fruit. 

Although these documents might still end up together in the same cluster, that would proba­

bly be because they share many other common words, such as vitamin, nutrition, healthy, 

tree, diet, etc. The main concept words (apple, orange and peach) would play no role or 

even negative roles in the clustering. This was possibly one of the causes that GeneNarrator 

I performed inconsistently in the first-step clustering, since synonyms are widely used in 

MEDLINE citations and biomedical concepts are highly related. Concept-based methods 

might be expected to be able to help solve this problem. 

Another potential strength of a concept-based text representation is that it might filter 

out irrelevant words. With the choice of an appropriate ontology, only the information rele­

vant to the purpose need to be kept in the representation. Therefore, the clustering algo­

rithms could also focus on what is important, and not be distracted by irrelevant keywords. 

Although similar effects may be partially achieved in BOW representation with an extended 

stopword list for filtering out "unwanted" keywords, it seems likely to be infeasible in a prac­

tical sense. Except for a relatively few very common stopwords (e.g. be, of, not, that, etc.), 
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there is no consensus about what is "unwanted." It is different from user to user, or even oc­

casion to occasion for the same user. In addition, there is no community effort toward devel­

oping comprehensive stopword lists. On the other hand, it is a hot area right now in develop­

ing biological ontologies, which can be utilized for our purpose. 

Our next goal was then to implement a concept-based clustering approach, and to see 

whether it can improve GeneNarrator's performance. As previously pointed out in chapter 2, 

there are three challenging technical requirements for a concept-based text clustering system 

(repeated here for convenience). 

1. An ontology that encodes sufficient background knowledge about the domain of interest 

(genomics in our case). 

2. A natural language processing algorithm that efficiently and effectively maps free text to 

ontology concepts. 

3. A text-clustering algorithm that can effectively utilize the ontology. 

These issues are discussed in the next three subsections. 

5.1 Choice of ontology 

Since we intended to develop a functional genomic analysis system, the Gene Ontol­

ogy (GO) seemed natural to consider as a choice of ontology. The GO is a hierarchical con­

trolled vocabulary for describing genes and their products from three aspects (three 

branches): biological process, molecular function and cellular component [3,20,42], How­

ever, further evaluation revealed that GO's development was immature and had intrinsic de­

sign flaws. 

5.1.1 Imbalance in the development of GO 

GO was first proposed in 1998 by a joint force associated with several model organ­

ism genomic databases, Drosophila Genome Database (FlyBase)4, Mouse Genome Informat­

ics (MGI)5, Saccharomyces Genome Database (SGD)6 and the Institute of Genomic Research 

4 http://flybase.bio.indiana.edu/ 

5 http://www.informatics.jax.org/ 
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(TIGR), in response to the explosion of biological data resulting from technological ad­

vancement in sequencing, microarrays, proteomics and metabolomics. Seven years later, GO 

has grown tremendously. In its 9/2005 release, there were 19,465 concepts. Excluding un­

usable ones (such as "obsolete" and "relationship"), 18,455 concepts can be used for annotat­

ing genes and their products. 

The first evidence of imbalance is the huge variation in leaf depth. A leaf concept is 

one without any child concepts. There are 11,369 leaves out of 18,455 total concepts. The 

depth of a leaf concept is defined as the maximum number of arcs to the root concept ("all"). 

The deepest leaf concepts have 18 steps (G0:0045856 = "positive regulation of pole plasm 

oskar mRNA localization" and 00:0045855 = "negative regulation of pole plasm oskar 

mRNA localization"), while the shallowest have only 2 steps (G0:0030533 = "triplet codon-

amino acid adaptor activity", G0:0031386 = "protein tag", and G0:0045735 = "nutrient res­

ervoir activity"). The average leaf depth is 7.67 ± 2.27 (mean ± SD). The variation reflected 

the fact that in some areas GO has gone to unnecessarily detailed levels (the necessity will be 

discussed shortly), while in other areas GO just scratched the surface. For example, one 

group [32] stated that GO had insufficient coverage in immunology. While building an 

automatic system for genome annotation and pathway identification, another group [44] de­

cided to use the KEGG Orthology, instead of GO, as the controlled vocabulary because GO 

concepts did not match known pathways directly. It is arguable that GO cannot and should 

not cover everything. Immunology is a huge domain deserving an ontology of its own. 

However, there is no excuse for not covering pathways. Isn't it a major category of biologi­

cal process? 

The structural imbalance of GO is also shown from its use in annotation of 

gene/products. Ideally, concepts should be used at the same level of frequency. If some con­

cepts are used extremely frequently, it is a strong indication that these concepts should 

branch into more detailed ones. On the other hand, if some concepts are rarely used, they 

should be eliminated from the ontology, and their parent concepts be used for annotations 

instead. It is also to be hoped for that the GO concepts annotated to a gene/product should be 

6 http://www.yeastgenome.org/ 
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as specific as possible, i.e. using leaf concepts whenever possible. However, the current 

status of GO annotation is far from supporting such a scenario. 

There are 25 public databases, including many model organism genomic databases 

such as FlyBase, SGD, MGI, and others contributing 7,577,336 annotations at the GO con­

sortium website (in the 9/2005 release). The biggest contributor is the Universal Protein Re­

source (UniProt)7 with 5,940,839 annotations, and the smallest contributor is AgBase8 with 

109 annotations. The total number of annotated genes/products is 1,926,085 (on average, 3.9 

concepts per gene/product). Out of 18,455 usable concepts, 10,988 (59.5%) were actually 

used. Table 12 summarizes the usage of GO concepts in the annotations, breaking down to 

the three major branches. The most surprising fact was that about 40% of the concepts, in­

cluding leaf concepts, were never used in any annotation. If they were never used, why 

would they be introduced into the GO in the first place? A closer look at some unused con­

cepts might give us some clues. 

Table 12. Usage of GO concepts in annotation 

Branch Usable In use % 
Biological process 9,805 5,200 53.0% 
Molecular function 7,076 4,685 66.2% 
Cellular component 1,574 1,103 70.1% 

Total 18,455 10,988 59.5% 
Leaf 11,369 6,487 57.1% 

One of the unused concepts was nuclear translocation ofMAPK during cell wall bio­

genesis (GO:0000201). It was a subconcept of biological process, and its depth was 12. Us­

ing the concept as a query to PubMed returned 0 hits (on 03/02/2006). It is no wonder that 

the concept was not used in any annotations, because no one ever talked about it in the entire 

MEDLINE. The concept was also a good example for examining the structure of GO con­

cepts, illustrating an intrinsic design flaw of GO. 

7 http://www.pir.uniprot.org/ 

8 http://www.agbase.msstate.edu/ 
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5.1.2 A critical defect of GO 

Before we analyze the concept concept, let's pull back a step and think about what 

GO, as a controlled vocabulary, should be like. A controlled vocabulary is basically a sim­

plified (restricted) language such as might be applicable to a specific domain. A language 

needs nouns to represent various entities (concrete or conceptual) in the world (domain), and 

probably fewer verbs to describe relationships among entities. The number of verbs needed 

depends on the types of relationships in the domain. For example, in the Linnaean taxonomy 

(a special type of ontology), there is only one type of relationship, subsumption, called "isa" 

in artificial intelligence. Is species A in genus B, which in turn is in family C? In other 

words, is it the case that A isa B isa C? Hence, the edges in a taxonomy tree can be inter­

preted as meaning isa, and this is sufficient for the Linnaean taxonomy. GO provides two 

verbs, "is_a" for the subsumption relationship, and "part_of ' for the part-whole relationship. 

Are they enough? 

Now let's have a closer look at the GO concept nuclear translocation of MAPK dur­

ing cell wall biogenesis (GO=0000201). It actually doesn't name an abstract conceptual "en­

tity", but tells a "story" involving spatial and temporal interactions among three entities (nu­

cleus, MAPK, and cell wall). This looks funny from a language point of view. A speaker 

cannot tell a story by organizing nouns and verbs into sentences, because there are no verbs. 

All s/he can do is to create a new, giant, funny-looking noun. Such nouns contain so much 

information; they may be good only for one-time use. Therefore, the language is inflexible 

and lacks expressiveness. 

Another consequence of the lack of relationships is overuse (hence abuse) of the ex­

isting ones, especially "part_of." The following examples show that "part_of ' is used with 

different meanings. 

• Extracellular organelle (GO:0043230) is "part_of ' Extracellular region (G0:0005576) 

• mRNA editing complex (G0:0045293) is "part_of ' cytoplasm (G0:0005737) 

• Establishment of cellular localization (GO:0051649) "part_of" cellular localization 

(G0:0051641) 

The first example is a misuse. How can an organelle have a part-whole relation with 

a space? It is as ridiculous as saying "I am part_of my car, because I sit in it." It is not diffi­
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cult to guess that the actual intention was to say, "the organelle IS LOCATED IN or OCCU­

PIES the region." However, since there are no other verbs available for describing spatial 

relationships, abusing "part_of ' is inevitable. The second and the third examples are not 

wrong, but their meaning is quite different (spatial vs. temporal). Misuse and ambiguity may 

pose challenges for computer programs that automatically process annotations. 

The unbalanced coverage of GO in many areas is just a matter of growing pains. 

Given time and resources, there is no doubt that GO can eventually cover the domain evenly. 

The lack of verbs, however, is a more serious defect, one which has severely hampered GO's 

development. 

There are two possible explanations for the design of GO with only two types of rela­

tions (is_a and part_of). The first explanation is that the original designers considered the 

subsumption relation and part-whole relation sufficient in the world of GO. Such a simpli­

fied view of the domain was probably borrowed and extended from the Linnaean taxonomy, 

in which only the subsumption relation is needed. The later development of GO outgrew the 

domain boundaries drawn by the original designers. Hence, other types of relationships (i.e. 

spatial and temporal relations) sneaked in, resulting in ill-formed concepts. 

An alternative explanation is that the original GO design was "naïve" [42]. It bor­

rowed and extended the structure of the Linnaean taxonomy without considering whether or 

not that structure could meet the requirements of GO. Plausibly, there was no real require­

ments analysis at all. The genomic research community was in such need for a controlled 

vocabulary that GO was embraced without sufficient critical analysis, even though it had 

such a severe defect. 

5.1.3 MeSH is the choice 

The ill-formed GO concepts were difficult to work with. Its unbalanced and incom­

plete coverage of the biomedical domain made itself questionable as a source of background 

knowledge to guide text clustering. Hence, we turned to other alternatives, such as the open 

biological ontologies (OBO) [1], unified medical language system (UMLS) [50] and medical 

subject headings (MeSH) [49]. 
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OBO is currently (as of Mar. 2006) hosting 55 ontologies (including the three major 

branches, cellular component, molecular function and biological process from GO) in seven 

formats (GO, OBO, protégé, XML, OWL, html and plain text). Some of them are targeted to 

very specific domains for specific species, such as Arabidopsis gross anatomy, Mosquito 

gross anatomy, and Plasmodium life cycle. There is obvious overlap among some ontolo­

gies. For example, there are four plant anatomy ontologies (Arabidopsis gross anatomy, Ce­

real plant gross anatomy, Maize gross anatomy and Plant structure) and two mouse anatomy 

ontologies (Mouse adult gross anatomy, Mouse gross anatomy and development). There 

seems little coordination among the development teams. More seriously, there is a lack of 

principles, guidelines or well-established best practices in biological ontology design. It is 

no surprise that we could not find a suitable ontology for GeneNarrator in OBO. 

The unified medical language system (UMLS) was developed and is distributed by 

the national library of medicine (NLM). One of its components, Metathesaurus, is a very 

large vocabulary database containing biomedical and health related concepts (over 1 million 

concepts), their synonyms (5 million, some in multiple languages), and their relationships. It 

is built from more than 100 controlled vocabularies used in patient care, health services bill­

ing, public health statistics, indexing and cataloging biomedical literature, and /or basic, 

clinical, and health services research. It is too much for GeneNarrator. 

The last candidate is the Medical Subject Headings (MeSH) thesaurus, also developed 

at NLM and one of the source vocabularies of UMLS. It seemed likely to serve GeneNarra­

tor well due to its following characteristics. 

• MeSH is designed for indexing, cataloging and searching biomedical literature, par­

tially overlapping with GeneNarrator's purposes. 

• With over 50 years of development and evolution since 1954, MeSH is much more ma­

ture than the newly developed ontologies, such as GO. 

• The collection of synonyms for MeSH concepts is extensive. 

• Most MEDLINE citations have a list of MeSH concepts assigned by human experts, 

which can be of great help in dealing with the next technical challenge, mapping free 

text to ontology concepts. 
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5.2 Concept mapping 

5.2.1 MMTx 

MetaMap Transfer (MMTx) is a supplemental project to the UMLS developed at 

NLM. It maps free text to the UMLS Metathesaurus concepts. In other words, it discovers 

what Metathesaurus concepts are discussed in the text. The input text is processed in MMTx 

through a pipeline of modules. First it is parsed into smaller and smaller components such as 

paragraphs, sentences, phrases, and tokens. Then UMLS concepts containing one or more of 

the tokens (or their variants) are retrieved as candidates, and the candidates are scored against 

the phrases. The final mapping is put together with the best candidates, like fitting together a 

puzzle, so that as many of the tokens in the original text are covered as possible, yet without 

overlapping. The process is illustrated with a sample sentence in Fig. 6. 

The sentence was first broken down into four phrases (red bars). Then all UMLS 

concepts that contain at least one token in the phrases were retrieved as candidates (colored 

in blue). A token might retrieve multiple candidates (RNase); and variants of a token were 

also retrieved (mediate, mediator and mediation for mediated). The candidates were scored 

RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns 

Meta Candidates (1) 
861 Introns 

Meta Mapping (861) 
861 Introns 

Meta Candidates (3) 
884 Pre-mRNA (RNA, Messenger, Precursors) 
793 mRNA (RNA, Messenger) 
660 Pre (Before values (qualifier value)) 

Meta Mapping (884) 
884 Pre-mRNA (RNA, Messenger, Precursors) 

Meta Candidates (11) 
812 degradation 
694 RNase ill (Ribonuclease III) 
645 RNase (Endoribonucleases) 
645 RNase (Pancreatic ribonuclease) 
645 RNase I (Pancreatic ribonuclease) 
645 RNase (Ribonucleases) 
645 RNase II (Exoribonuclease II) 
645 111 (III (qualifier value)) 
612 Mediate (Mediating) 
562 Mediator 
562 Mediation 

Meta Mapping (850) 
694 RNase III (Ribonuclease HI) 
612 Mediate (Mediating) 
812 degradation 

Figure 6. MMTx maps free text to UMLS concepts 
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based on the number of matching tokens and whether they were original tokens or variants. 

Finally, the first phrase was mapped to the three best candidates (RNase III, mediate and deg­

radation), which covered all the tokens in the phrase without any overlap. The other phrases 

were processed similarly except that some tokens were not covered. Although MMTx can be 

configured to use other thesauri (e.g. MeSH) for GeneNarrator, its mapping strategy has 

some limitations. 

• The mapping is limited within individual phrases; no concepts can cross phrase 

boundaries. In the above example, the MeSH concept mRNA degradation (D020871) 

was not discovered, because its constituent terms were in two phrases. Instead, two 

separate concepts (mRNA - DO 12333 and degradation - Q000378) were mapped. Yet 

there is no doubt that the single concept mRNA degradation contains richer information 

than the two separate ones. 

• There is no compelling reason to avoid overlapping concepts (i.e. concepts sharing 

some tokens). In fact, token sharing is very common in MEDLINE citations. For ex­

ample, in nicotinic and muscarinic acetylcholine receptors, the two underlined tokens 

are shared by two concepts. MMTx would find muscarinic acetylcholine receptors 

(D011976), but nicotinism (nicotine poisoning) instead of nicotinic acetylcholine recep­

tors. 

The limitations forced us to design our own concept-mapping module, the MeSH 

Miner. 

5.2.2 MeSH Miner 

Designed to overcome the limitations of MMTx discussed above, the MeSH Miner 

maps MEDLINE citations to MeSH concepts. It consists of two components, a normalized 

MeSH lexicon and a mapping module. 

The lexicon normalizes MeSH concepts' names and synonyms, converting each name 

(or synonym) into a bag of tokens in their base format using the SPECIALIST Lexicon tool9 

(a component of UMLS). For example, the concept Adverse Drug Reaction Reporting Sys-

9 http://www.nlm.nih.gov/research/umls/meta4.html 
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terns (DO16907) is normalized to {adverse, drug, reaction, report, system}. All tokens in the 

lexicon are assigned frequency-based scores: S(t) = max{(10 - log%F), 0}, where F is the 

number of concepts containing the token t. 

The mapping module's processing workflow is illustrated in Fig. 7. It takes a cita­

tion's title, abstract and manually curated MeSH list as input. The title and abstract are 

parsed into individual sentences. The mapping is done sentence-by-sentence; no mapped 

concepts can cross two or more sentences. A sentence is first tokenized; and the tokens are 

normalized to their base forms. Then all concepts containing one or more of the tokens are 

retrieved and scored as candidate concepts. A candidate's score is the sum of the scores of 

the matched tokens scores minus the scores of the unmatched tokens. There is an added bo­

nus if all tokens are matched, and a penalty if other tokens are mixed in between. 

S(C) = 2L^^(0-H^^/(0 + bonus(all_match)-penalty(gap) 

The bonus and the penalty can be fixed scores, or can be based on the number of to­

kens matched or mixed. Candidates with scores lower than a predefined threshold are dis­

carded. Also discarded, optionally, are candidates whose direct or indirect children are also 

candidates but with better scores. Any candidates not discarded are the mapped concepts of 

the sentences. Finally, the concepts in the human-curated MeSH list are optionally added to 

the mapped ones if they are not already included. An optional branch filter can be applied to 

the mapping module so that only the concepts from the selected MeSH branches (e.g. Anat­

omy, Diseases, Chemicals and Drugs, and Biological Sciences, etc.) are mapped. 

next 
sentence 

Tokenize a sentence 

Add curated MeSH list 

Retrieve and score candidate concepts 

Parse title and abstract into single sentences 

Discard low-scored candidates below a cut-off 

Input: PMID (title, abstract, curated MeSH list) 

Discard candidates whose children have better scores 

Figure 7. Processing workflow of MeSH Miner 



www.manaraa.com

48 

MeSH Miner was tested on a sample sentence "RNAse Ill-mediated degradation of 

unspliced pre-mRNAs and lariat introns", and compared against MMTx (Table 13). The all-

match bonus and the gap penalty were fixed at 20 and 5, respectively, and the cut-off score 

was set at 10. Most concepts mapped by MMTx were also identically discovered by MeSH 

Miner, except that the concept degradation was replaced by the more specific mRNA degra­

dation. MMTx could only map to degradation because of the limitation of phrase bounda­

ries. MeSH Miner was designed to ignore the phrase boundaries so that more complex 

and/or specific concepts could be discovered. 

Table 13. Comparison between MMTx and MeSH miner 

MMTx MeSH Miner 
Score Concept Concept Score 
812 degradation mRNA degradation 37 

884 Pre-mRNA Pre-mRNA 30 
861 Introns Introns 29 
694 RNase III RNase III 28 
612 Mediate (Mediating) Mediating 27 

mRNA 25 

5.3 Concept-based representation and clustering 

With titles and abstracts mapped to MeSH concepts, MEDLINE citations can be rep­

resented using a vector space model in which each citation is viewed as a vector of concepts 

(aVOC): 

d j  ( C ( j ,  , . . . ( 7 ^  ) ,  i  1,2,..., m 

where di is the zth document in a set of m documents, and the vector space consists of 

n concepts. Although the VOC representation looks quite similar to the BOW representation, 

there is a major difference. While the elements in a BOW representation are orthogonal, 

those in a VOC representation may be related by an ontology. For example, BOW views ap­

ple, orange and baseball as three unrelated things. The difference between apple and orange 

is the same as that between apple and baseball. This is not the case for VOC, because the 

ontology has the knowledge that apple is closer to orange than to baseball. 
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It is, however, not immediately clear how the knowledge provided by the ontology 

can be utilized to cluster the vectors. Most clustering algorithms, such as £-means and ag-

glomerative hierarchical algorithms, are distance-based, relying on the orthogonal assump­

tion for distance calculations. Although the CAM algorithm does not explicitly depend on 

the orthogonal assumption, it has no place to utilize an ontology, hence implicitly assumes 

that all concepts are unrelated. To take advantage of the ontology, a method called "concept 

upgrading" was developed, which attempts to mimic how a human expert utilizes back­

ground knowledge in clustering documents. 

Consider how an expert might cluster a set of documents. If there were enough 

documents discussing apple, orange or peach to form clusters by themselves, he/she would 

simply treat them as unrelated and put them into separate clusters. If there were too few 

documents for that, s/he would put documents about apple, orange or peach together under a 

more general topic like fruit. The same idea is implemented in "concept upgrading." If a 

concept's document frequency (the number of documents containing the concept) is below a 

pre-defined threshold, the concept is aggregated (upgraded) to its parent concept. If a parent 

has aggregated all its children and is still below the threshold, the parent itself will be up­

graded. The upgraded vectors can then be clustered using the CAM algorithm. 

5.4 Evaluation of concept-based text clustering 

The above strategies for concept mapping and clustering were implemented in Gene­

Narrator, and evaluated on the gold standard citation set with four slightly different tests. 

The optional branch filter (Anatomy, Diseases, Chemicals and Drugs, and Biological Sci­

ences) was applied to all four tests. A preliminary trial indicated that CrossBOW could not 

split the citation set at the root level under the default parameters (branch-factor = 2, max-

branch-depth = 4) if the filter was not applied. The manually curated MeSH list was not 

added to the mapping in test 1. Test 3 and 4 tried concept upgrading with two different df 

threshold (5 and 10, respectively). Each test was run for three or five trials. The test results 

in terms of self-consistency among trials and agreement with the standard are summarized in 

table 14, which also provides a comparison of these with the BOW-based clustering results. 
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Table 14. Evaluation of concept-based text clustering in comparison with BOW-based clustering 

Test 1 Test 2 Test 3 Test 4 BOW 
Branch filter yes yes yes yes 
MeSH list no yes yes yes 
Upgrade threshold N/A N/A 5 10 

Self consistency 0.67 ± 0.02 0.68 ±0.02 0.69 

± 

0.02 

0.68 ± 0.04 0.67 ± 0.02 

Agreement 0.51 ±0.01** 0.54 ± 0.02" 0.52 ±0.01** 0.52 ± 0.02** 0.62 ± 0.01 
p < 0.001 compared to BOW-based result (two sample t-Test assuming equal variances) 

Several observations are evident from the above results. 

• Self-consistency of the clustering was not affected. 

• Adding the human-curated MeSH list or concept upgrading had little effect on either 

consistency or agreement. 

• Concept-based clustering significantly decreased agreement with the standard. 

A possible cause of the decreased agreement is that MeSH concepts could not cover 

all the details in the text; some detailed information, which might be of value to the cluster­

ing, was lost in the process of concept mapping. MeSH is designed for indexing and catego­

rizing the entire MEDLINE database (-17,000,000 citations). Thus comprehensive coverage 

of all details is impractical and unnecessary. There are a total of 23,885 concepts in MeSH 

(2006 edition), out of which -15,000 are under the branches we are interested in (Anatomy, 

Diseases, Chemicals and Drugs, and Biological Sciences). The total number of concepts 

mapped to the gold standard citation set was about 1,500, while the BOW representation had 

about 15,000 dimensions. In particular, many protein or gene names were lost. A concept-

based text representation without loss of relevant and important details is desirable. 

5.5 Hybrid representation and clustering 

A hybrid text representation, called VOWC (vector of words and concepts), was then 

designed to address the above requirement. VOWC is a straightforward extension of VOC, 

involving only the following small modification to the MeSH Miner. After a citation is 
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mapped to a VOC, unmapped tokens are not thrown away but instead are appended to the 

vector, converting it to a VOWC. 

Table 15. Comparison of clustering performance among three methods of text representations. 

Representation No filter 
Filter 

Representation No filter 
# > 5  d f <  500 5 < d f <  500 

Consistency 

Agreement 

BOW 0.67 ± 0.02 0.69 ±0.01+ 
Consistency 

Agreement 

VOC 0.68 ± 0.02 Consistency 

Agreement 

VOWC 

BOW 
0.67 ± 0.01 

0.62 ± 0.01 

0.72 ± 0.02" 0.69 ± 0.01+ 0.73 ± 0.02" 

Consistency 

Agreement 

VOWC 

BOW 
0.67 ± 0.01 

0.62 ± 0.01 0.61 ±0.01 

Consistency 

Agreement VOC 0.54 ± 0.02** 

Consistency 

Agreement 

VOWC 0.61 ±0.01 0.63 ± 0.01 0.64 ± 0.00* 0.62 ± 0.02 
+ p < 0.05 compared to BOW-based result (two sample t-Test assuming equal variances). 

++** p < 0.001 compared to BOW-based result (two sample t-Test assuming equal variances). 

VOWC was also evaluated on the gold standard citation set. In addition, a document 

frequency (df) filter was also tested. The filter discards concepts (and words) in the docu­

ments if they appear too frequently or too rarely in the entire citation set. The evaluation re­

sults were tabulated in Table 15, and the following observations may be made. 

• VOWC permitted clustering agreement, lowered in VOC, to the same level as in BOW, 

indicating that MeSH concepts could not cover all the details necessary for the cluster­

ing. 

• In terms of clustering consistency, the three representations had no differences. 

• Filtering too frequent and/or too rare concepts (words) could improve self-consistency 

of the clustering. Although statistically significant, the improvement was too marginal 

to have much impact. 

• The effect of filtering on clustering agreement was hardly noticeable. 

It was perhaps disappointing to see that neither the VOC nor the VOWC representa­

tions improved text clustering much in terms of consistency and agreement. The only im­

provement in consistency came from df filtering, which has nothing to do with the concept-

based representations. Yet this improvement was too marginal to have impact on the agree­

ment, let alone on further enhancing the gene analysis. A new strategy was needed. 
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6.2 Implementation 

Given a set D of n documents and a hierarchical clustering algorithm A, the multi-

clustering algorithm identifies a certain percentage (p) of the documents as the "core" set in 

the following steps. 

1. Construct a fully connected, undirected, weighted graph G = {V, E}, where each vertex v 

in V is mapped one-to-one to a document d in D. Thus there is an edge in E connect­

ing the pair of vertexes v, and vj for each i and j. All edge weights are initialized to 0. 

2. Run A on D once and get a solution. Update the edge weights based on relationship of 

document pairs in the solution. w,y := w,y + r#, where r,y is the level of the lowest common 

parent node of documents di and dj in the cluster hierarchy (Fig. 8). 

3. Repeat step #2 k (user defined) times. 

4. Remove E from G. Sort all edges in E by weight descendingly. Define an empty set C of 

core documents. 

5. Restore edges from E into G one-by-one in the sorted order, connecting vertexes to small 

islands and small islands to big islands. Once the size of a growing island exceeds a pre­

defined threshold s, it is removed from G and the corresponding documents added into C. 

All edges involving the vertexes in the island, whether they have been put back in G or 

remain in E, are discarded. 

6. Repeat step #5 until the size of C exceeds the target (pxri). 

The resulting islands in the core set C can be treated as a flat clustering solution, in 

which the documents remaining in the graph is regarded as forming a "miscellaneous" clus-

Cluster hierarchy Level 

Figure 8. Relationship of document pairs in a hierarchical clustering solution 



www.manaraa.com

54 

ter. If a hierarchical clustering solution is still needed, the original algorithm can now be ap­

plied to C, which is D with the outliers removed. 

6.3 GeneNarrator II 

The <if filtering module and the multi-clustering module, as well as the MeSH miner 

(concept mapping module), were integrated into GeneNarrator II (Fig. 9). Some modules 

were modified from GeneNarrator I (DocBuilder II, ArrowSmith II and VOWC Viewer), 

while CrossBOW and GeneSmith were imported without change. The modules are summa­

rized in Table 16. 

Table 16. Description of GeneNarrator II modules 

Module Description Modification/Addition 

DocBuilder II Retrieve MEDLINE citations relevant to a list of genes. 
Modified to extract manually 
curated MeSH list. 

MeSH Miner 
Identify MeSH concepts in free text. Combine them 
with manually curated MeSH concepts and unmapped 
terms to convert a citation into a VOWC. 

New module (replacing 
LongBOW). 

d/Filter 
Discard too frequent or too rare concepts/terms from the 
VOWC representations. 

New module. 

Multi-clusterer 
Identify and discard outlier citations through multiple 
runs of CrossBOW. 

New module. 

CrossBOW Text clustering module implementing CAM algorithm. Not modified. 

GeneSmith 
Calculate genes' topic distributions. 
Cluster genes based on their topic distributions. 

Not modified. 

ArrowSmith II 
Extract representative keywords for topics. 
Score and rank representative sentences and citations. 

Modified to deal with 
mapped MeSH concepts. 

VOWC Viewer GUI interface for exploring the analysis results. Modified for MeSH concepts. 

Gene 
list 

r' g 

iVOWC Viewer 

Functional 
topics 

CrossBOW ArrowSmith 

GeneNarrator 

df Filter 
Gene 

groups jr MeSH Miner 

DocBuilder 

MEDLINE 

Multi-clusterer 

Figure 9. Architecture of GeneNarrator II 
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6.4 Evaluation of GeneNarrator II 

6.4.1 Text (1st-step) clustering 

GeneNarrator II was again evaluated on the gold standard citation set. Various pa­

rameters of df filtering and multi-clustering were tested in order to find the best combination 

for the most improvement. The evaluation workflow was illustrated in Fig. 10. The original 

citation set was first converted to VOWC representation using the MeSH miner. Then df fil­

tering was applied to the converted set to remove too frequent and/or too rare concepts and 

terms (high-pass: df> 5, low-pass: df < 500, and mid-pass: 5 < df < 500), resulting in three 

copies of the representation. Next, each copy underwent multi-clustering using the CAM (in 

CrossBOW) algorithm with k = 10; and four core document sets of various sizes (60%, 70%, 

80% and 90% of the original size) were extracted. As a control condition, four subsets of 

various sizes (60%, 70%, 80% and 90% of the original size) were randomly sampled from 

the mid-pass set. Finally, the core sets and the random sets, as well as the three filtered sets, 

were clustered using CrossBOW 3 to 5 times for each set. Self-consistency and agreement 

with the gold standard were calculated and compared for each condition. 

The results are summarized in Fig. 11. The following observations are evident from 

MeSH Miner 

df filtering 

Random sample 

Multi-clustering: = 10, CrossBOW 

Rand Rand Core Core Core 

Low-pass 

W< 500) 
High-pass 

( d f>5 )  

Original citation set 

VOWC representation 

Mid-pass 

(5  <  d f  <500 )  

Core Core 

70% 
Core Core Core Core Core Core Core 

CrossBOW clustering CrossBOW clustering CrossBOW clustering CrossBOW clustering 

Figure 10. Evaluation workflow for the multi-clustering algorithm 



www.manaraa.com

56 

the results. 

1. Multi-clustering works! With the outliers removed, the core document sets (especially 

the 60% and the 70% ones) have much better clustering results in terms of self-

consistency and agreement compared to the original document set. The improvement is 

significant both statistically (p < 0.001 for all non-random points at 60% and 70% com­

pared to the corresponding points at 100% on the same curve) and practically (improve­

ment greater than 15%). 

2. Although not as significantly as multi-clustering, df filtering can further improve cluster­

ing, especially in terms of consistency. 

0.9 

0.8 

0.7 

0.6 

Consistency of Clustering 

—O—mid-pass —o — low-pass —A — high-pass —D — random 

o— 

A—" 
0**5ter 

0-

— <X. 

ÙT— 
"""" C -̂

<x. 

1 

tr* o 

0.8 

0.7 

0.6 

0.5 

60% 70% 80% 90% 100% 

Size of Core Document Set 

Agreement of Clutering 

•mid-pass -•—low-pass —*—high-pass —•—random 

60% 70% 80% 90% 

Size of Core Document Set 

100% 

Figure 11. Effect of multi-clustering and df filtering on consistency and agreement of text clustering 
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3. The most improvement was achieved at the 60% core size of multi-clustering with mid-

pass filtering of df with 0.83 ± 0.02 in consistency and 0.74 ± 0.01 in agreement, in com­

parison to 0.67 ± 0.02 (consistency) and 0.62 ± 0.01 (agreement) for BOW-based cluster­

ing in GeneNarrator I. This is about 84% (0.74 out of 0.88) of the best achievable 

agreement for the citation set of 0.88 (see Section 4.4). The improvement at 70% core 

size was about as good as 60% (0.83 ± 0.02 and 0.73 ± 0.01 in consistency and agree­

ment, respectively). 

4. The randomly sampled subsets did not show any improvement. It is thus safe to rule out 

the argument that improvement from multi-clustering is due to decreasing the size of the 

document set. 

6.4.2 Gene (2nd-step) clustering 

The performance of GeneNarrator I on the results of 2nd-step (gene) clustering was 

disappointing with 0.52 ± 0.04 and 0.52 ± 0.08 consistency and agreement, respectively (see 

section 4.4 for more details). The low performance was due largely to inconsistency and dis­

agreement in the results of 1st-step (text) clustering. With the significant improvements that 

were obtained from multi-clustering and df filtering in the lst-step clustering, it seemed inter­

esting to question how much the improvement would propagate to the results of 2nd-step clus­

tering. This was done as described next. 

The GeneSmith module of GeneNarrator I was responsible for the 2nd-step clustering 

process. This is where the genes are clustered based on what document clusters they appear 

in. This process was applied to the multi-clustering results derived from the mid-pass 

VOWC representation set. The results are summarized in Fig. 12. The consistency of gene 

clustering was significantly improved compared to GeneNarrator I, e.g. from 0.52 ± 0.04 to 

0.66 ± 0.04 at 60% core size (p < 0.001). However, no significant improvement was ob­

served for the agreement of gene clustering, e.g. 0.52 ± 0.08 (BOW) vs. 0.52 ± 0.08 (60% 

core size). 

The above results might sound disappointing, but they actually were much better if 

viewed from the perspective of topic hierarchy. This is illustrated in Table 17 with the seven 
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Gene Consistency 

Gene Agreement 

Text Consistency 

•Text Agreement 

60% 70% 80% 90% BOW 

Size of Core Set 

Figure 12. Evaluation of gene clustering based on (//-filtered multi-text clustering. 

* p < 0.05, ** p < 0.001 compared to the gene consistency of BOW. 
(two-sample t-Test assuming equal variance, error bar = standard deviation). 

genes from the ubiquitin-mediated proteolytic pathway, which have a relatively simple topic 

distribution in a single topic (/1/0/0/0/1). The genes contributed 87.2% (102 of 117) of the 

citations to the topic. Several factors lowered the agreement NMI resulting from not cluster­

ing them in the same group. 

Table 17. Topic distributions of the genes in the ubiquitin-mediated proteolytic pathway 

Gene Gene group Major Topic (%) 
YDR394w 7 /1/0/0/0/1 (5/6 = 83%) 
YGL048c 7 /1/0/0/0/1 (45/45 = 100%) 
YKL145w 7 /1/0/0/0/1 (17/19 = 89%) 
YOR117w 7 /1/0/0/0/1 (3/3 = 100%) 
YOR259c 7 /1/0/0/0/1 (19/22 = 86%) 
YGR270w 10 /1/0/0/1/1 (1/2 - 50%) 
YDL007w 11 /1/0/0/0/1 (12/15 = 80%) 

1. The 2nd-step clustering algorithm (/c-means) is too affected by details, and not sensitive 

enough to the big picture. Thus it seems natural for a human expert to put gene 

YDL007w in the same group as the other group #7 genes. Yet the algorithm put it in an­

other group, because either the main distribution in the topic (80%) was just below a 

threshold (between 80% and 83%), or the distribution of 3 other citations (< 20%) quali­

fied it for group #11. 
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2. One or two citations' disagreement does not inordinately impact the overall agreement of 

text clustering. However, for genes with only a few citations, one or two citations can 

make big difference. 

3. Although not obvious in the above example, the &-means algorithm fails to take advan­

tage of the topics' hierarchical structure. In effect, topics are considered orthogonal to 

one another. Therefore if a gene made a major contribution to topic /1/0/0/0/0, it would 

not be recognized as closely related to topic /1/0/0/0/1, and hence would have little 

chance to be clustered into the relevant group. 

4. The NMI metric itself does not take into consideration the hierarchy either. Therefore, if 

two neighboring nodes exchanged some elements (genes or citations), the actual dis­

agreement would be much less than perceived from the lowered NMI. 

Nevertheless, the majority of the membership was still captured in the above exam­

ple. In addition, gene grouping based on functional topics is not the only important thing 

about GeneNarrator; the result of text clustering can be viewed for individual genes. In other 

words, users can browse a single gene's topic distribution, with or without considering its 

grouping within the set of genes. 

6.4.3 Biological meaning of text clusters 

The CrossBOW (text clustering) module can output its assessment of the most prob­

able concepts and terms for each cluster (topic), and these can be used to describe the bio­

logical significance of the topic. GeneNarrator also scores sentences and citations for con­

taining the concepts and terms. High-scoring sentences and citations may further help capture 

biological meanings. However, biological significance is difficult to evaluate in the same 

way as clustering consistency and agreement. Whether or not a list of concepts and terms 

makes biological sense is subjective, and might even vary over time for the same evaluator. 

Hence, we only give some example concepts/terms here and point out some interesting ob­

servations. 
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BOW-based GeneNarrator I VOWC-based GeneNarrator II 

/WI/I/OA) '1/1 /0/1/1/lA) 

YGL048c Q0130 Q0130 YGL048c 

Figure 13. Comparison of two genes' topic distributions in BOW- and VOWC-based clustering 

The example shown in Fig. 13 compared two genes' topic distributions in BOW-

based GeneNarrator I and VOWC-based GeneNarrator II analyses. One gene (YGL048c) 

was from the ubiquitin-mediated proteolytic pathway. Another (Q0130) was from the respira­

tory chain pathway. YGL048c had 50 citations in the BOW representation and 45 in the 

VOWC representation; and Q0130 had 50 in BOW and 38 in VOWC. The reduction in the 

total number of citations was because the multi-clustering in GeneNarrator II discarded some 

outlier citations. The patterns of the distributions in both analyses were similar, with 

YGL048c concentrating in one topic and Q0130 spreading into several neighboring topics. 

The topologies of the branches in the two hierarchies were equivalent, even though they were 

labeled differently. 

Table 18. Comparison of the keywords for the ubiquitin-mediated proteolytic pathway 

BOW /0/0/0/0/0 VOWC /1/0/0/0/1 
proteasom, sug, rpt, atpas, ubiquitin, rpn, 
transcript, protein, gal, mts, tbp, proteas, 
rim, proteolvsi, ufd, receptor, proteolyt, yta, 
tfiia, pa, channel, ms, regulatori_complex, 
cad, msug, conjug, famili, activ_domain, 
phosphoryl, transcript_activ, toa, cap, pro-
tein_degrad, nucleu, ubiquitin protein, 
manduca, pre, noblp, ubr, ism, fza, tran­
script Jactor, bind_protein, muscl, gankyrin, 
die, nuclear, put_atpas, rna_polymeras_ii, 
hormone 

proteasome, Adenosinetriphosphatase, 26s, sugl, Endopeptidases, Tran­
scription Factors, 20s, Peptide Hydrolases, Ubiquitin, DNA-Binding 
Proteins, Ubiquitins, Trans-Activation (Genetics), Multienzyme Com­
plexes, Repressor Proteins, sug2, gal4, Cysteine Endopeptidases, Tran­
scription Factor TFIIA, Protein Subunits, proteasomal, Tissues, RNA, 
RNA Polymerase II, cDNA, DNA Repair, rptl, DNA-Directed RNA Po­
lymerases, tfiih, TATA-Box Binding Protein, Gene Expression, rpt4, rpt2, 
cdc68, Protein S, Chromatin, lid, rpt6, mts2, Adenosine Triphosphate, 
Transcription Factor TFIID, cimS, cim3, Nuclear Proteins, Phosphoryla­
tion, Hydrolysis, Methylation, Protein Isoforms, aaa, ubiquitinate, Cell 
Line 

The top 50 representative (most probable) concepts/terms of the topics may be com­

pared by viewing Tables 18 and 19. Overlapping concepts/terms are highlighted in colors, 

with the red ones were directly related to the pathways. The respiratory chain pathway in­

cluded three topics: mitochondrial genome, mitochondrial protein synthesis and mitochon-
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drial ATP biogenesis. GeneNarrator I and II agreed quite well with each other on the topics, 

indicated by many highlighted (overlapping) concepts/terms. 

Table 19. Comparison of keywords for the pathway of respiratory chain 

BOW /1/0/0/0/0 VOWC/0/1/1/1/1 (mitochondrial genome) 
cystein, trna, cystathionin, petit, cys, gene, 
sulfur, oah, methionin, enzym, mitochon-
dri_genom, genom, lyas, plant, mitochon-
dri_dna, clone, serin, shlase, str, atp, sulfhy-
drylas, ori, homocystein, exon, schizosac-
charomyc_pomb, acetylserin, rho, acetylho-
moserin, cyp83b, mitochondri, nidulan, 
cyp83a, cytoplasm, transposit, acetyltrans-
feras, fungi, biosynthesi, pomb, met, asper-
gillu, ibs, beta_synthas, homolog, male, glu-
cosinol, glu, sulphur, satas, synthas, sulphat 

Introns, Mitochondrial DNA, cob, Genome, Cytochromes b, RNA, 
Exons, Cytochromes, Electron Transport Complex IV, RNA Splic­
ing, petite, oxi3, Transfer RNA, Recombinant DNA, maturase, Oxi-
doreductases, Reading Frames, Schizosaccharomyces pombe Proteins, 
Cluster Analysis, DNA Restriction Enzymes, Genetic Recombination, 
Ribosomal RNA, Gene Order, rRNA Genes, Nucleic Acid Conforma­
tion, Open Reading Frames, coxl, oxil, Cytochrome b Group, Apo­
proteins, Base Pairing, Nucleotides, Species Specificity, Protein Splic­
ing, Nucleic,Acid Repetitive Sequences, RNA Splice Sites, oxi2, 
Structural Genes, Antibodies, Endoribonucleases, Peptides, Fungal 
RNA, hybridization, 10b, Fungal Genome, d273, oli2, Nucleotidyl­
transferases, Cytochromes a, Nucleic Acid Hybridization 

BOW /1/0/0/0/1 VOWC /0/1/1/1/0 (mitochondrial protein synthesis) 
mrna, pet, cox, translat, transcript, gene, 
mutat, cob, mitochondri, cbp, fumaras, 
coxlp, synthesi, ma, oxi, nuclear_gene, nu­
clear, mss, ai, coxlp, aep, box, respiratori, 
translat_activ, codon, ts, nam, cbs, fum, cv-
tochrom, suppressor, hi, arg8m, utl, excis, 
mitochondri_gene, mitochondrLmrna, 
mss51p, protein, phenotyp, synthet, niito-
chondri_translat, translat_product, cox3p, 
petlllp, oxa, mitochondri_transcript, 
coxiii, pre_mrna, suv 

mRNA, Protein Biosynthesis, cox3, Gene Expression, petl22, pet54, 
cox2, cbpl, Membrane Tissue, pet494, 5' Untranslated Regions, 
Membrane Proteins, cox2p, Codon, petlll, Untranslated Regions, 
Mitochondrial Proteins, Initiator Codon, argSm, 3' Untranslated 
Regions, Mitochondria, Electron Transport Complex IV, Ribo­
somal Proteins, Nuclear Proteins, Alleles, Fungal Gene Expression 
Regulation, RNA Stability, mitochondrially, Polyribosomes, Reporter 
Genes, Elements, Temperature, Cytochromes, chimeric, nuclearly, 
Suppressor Genes, Ferricytochrome c', Cytochromes c, Oxidoreduc-
tases, Gene Deletion, Ribosomes, Isoenzymes, Trans-Activators, Pros-
taglandin-Endoperoxide Synthases, aug, Biogenesis, Prokaryotic Ini­
tiation Factor-2, coxlp, Cold, Protein Precursors 

BOW /1/0/0/1/0 VOWC /0/1/1/0/0 (mitochondrial ATP biogenesis) 
atp, oscp, atpas, oligomycin, beta_subunit, 
atp_synthas, cox5b, cox5a, oxygen, sector, 
résidu, phosphoryl, oxid, coq, heme, adp, 
hap, eye, amino_acid, cyt, membran, oli, 
mtatpas, imp, aerob, atpas_subunit, flf, pro­
ton, mitochondri_atpas, enzym, 
atp.svnt h as_. complex, 
amino_acid_substitut, atpas activ, vb, 
yeast atp synthas, som, hydrophob, acid, 
uas, chromatography aminolevulin, lethal, 
bovin, viia, alpha_subunit, mgi, hem, qh, 
oxidas_subunit, rnitochondriatp_synthas 

Adenosinetriphosphatase, Adenosine Triphosphate, Proton-
Translocating ATPases, oscp, Mitochondrial Proton-Translocating 
ATPases, Oligomycins, Mitochondria, Membranes, atp2, Protein 
Subunits, Amino Acids, Oxidative Phosphorylation, Phosphorylation, 
Membrane Proteins, Mitochondrial, diseases, terminus, Protons, 
atpl, Adenosine diphosphate, GAP-43 Protein, Antibodies, lethality, 
Amino Acid Substitution, nonfermentable, Glycerol, atp6, Proteolip-
ids, Bacterial Proton-Translocating ATPases, atp4, petite, Protein 
Precursors, Structure-Activity Relationship, Organelles, Hydrolysis, 
Protein Conformation, Glycogen Synthase, fermentable, Cell Division, 
Oligonucleotide Probes, Family Characteristics, Heart, Enzymes, 
Membrane Potentials, Cross-Linking Reagents, Infertility, aapl, 
Mutagenesis, hexahistidine, Mitochondrial Proteins, Biogenesis 

Even though the VOWC representation did not improve clustering quality in terms of 

consistency or agreement, it did provide better keywords than BOW representation. For ex­

ample, the keyword bind^protein (stemmed from binding protein) provided by BOW for the 

ubiquitin-mediated proteolytic pathway was too general or vague, while TATA-Box binding 

protein or DNA-binding protein given by VOWC was more meaningful. 
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Chapter 7 Discussion & Future work 

7.1 GeneNarrator and software engineering 

The development of GeneNarrator followed the principles of software engineering at 

several levels. First, the overall research design followed the general lifecycle of incremental 

software development, which consists of major phrases (requirements/specification analysis, 

design and implementation) and incremental cycles among phases. The first three chapters 

roughly map to the major phrases, and the chapters about improving text clustering resemble 

the cycles between design and implementation. 

The principles were also followed at strategic design level: modularization and de­

coupling. Modularization requires that complex system be divided into subsystems (mod­

ules). Decoupling demands interaction (dependency) between modules to be minimized, so 

individual modules can be replaced, modified and improved independently without breaking 

other modules. The two-step clustering approach modularizes and decouples text clustering 

and gene clustering from the complex task of genomic functional analysis. In addition to the 

biological advantages of the design (discussed in Chapter 2), the decoupling makes it possi­

ble to improve the two steps independently. Thus, GeneNarrator becomes an experimental 

platform for testing various text clustering algorithms and strategies for application in bioin-

formatics. 

Finally, software design patterns, proven best solutions for particular types of prob­

lems, were applied throughout the implementation. For example, the overall architecture of 

GeneNarrator I and II used the pipeline pattern, and the BOW Viewer used model-view-

control (MVC) pattern. 

This project is a demonstration that good software engineering practices can be ap­

plied to bioinformatics and lead to flexible, extensible and maintainable software applica­

tions. 
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7.2 Agreement measure 

It came to us as a surprise that the text clustering research community could not agree 

on a measure for agreement. The newly proposed measure, normalized mutual information 

(NMI), has the following desirable properties, making it suitable for wide acceptance. 

• NMI has well defined semantics from information theory. It measures the percentage of 

overlapping between two random variables' information. Under the context of cluster­

ing, it measures how certain the membership in one partition is if the membership in an­

other partition is known. This is the semantics of an agreement measure. 

• It is bounded by [0, 1], 

• Its baseline is stable, and not sensitive to the size of document set, the number of classes, 

the number of clusters, etc. These two properties make it possible to compare different 

algorithms in different studies. 

• Random guesses get zero credit. 

• Perfect scores are still possible even if an algorithm (e.g. fc-means) is given a wrong guess 

about the number of clusters in the dataset. The last two properties make NMI a "fair" 

measure. 

7.3 Use of background knowledge (ontologies) in text clustering 

This study has tested ontology-based text clustering. We hypothesized that the clus­

tering might be improved due to the following factors. 

• Focus can be on relevant information captured in the ontology, without the distraction 

of irrelevant terms. 

• Clustering can be guided by the background knowledge encoded in the ontology. For 

example, mapping synonymous terms to the same concept can avoid counting them as 

different things (as the case in BOW-based clustering). Concept upgrading combines 

less-frequent, closely related concepts into more general concepts, so that they may 

have more impact on the clustering results. 

The results however showed that the VOC representation alone actually decreased the 

quality of clustering. The hybrid VOWC representation restored the quality to the same level 

as the BOW representation. On the other hand, improvement was found in presentation of the 
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biological meaning of the text clustering (see Chapter 6). Concept mapping in hybrid con-

cept-based text representation could be considered as equivalent to the multiple-word term 

detection in BOW-based representation, except that the detection is knowledge-guided in­

stead of relying on statistics. This is how human experts recognize multiple-word 

terms/concepts. However, the improvement was difficult to measure in terms of a bounded 

and baseline-stable number, like NMI. 

Ontology-based clustering might still provide more dramatic improvements in clus­

tering in the future. The three prerequisites for a successful implementation are 

1. an ontology capturing the domain knowledge, 

2. a mapping algorithm identifying ontology concepts in free text, and 

3. a clustering algorithm that can utilize the ontology. 

These are not available or are in their infant stages at the present time. With the ad­

vance of research in these areas, ontology-based text clustering may still eventually show ad­

ditional improvements. 

7A Dimension reduction 

Several text clustering systems, reviewed in Chapter 2, were forced to reduce the di­

mensionality of the vector space (e.g. keywords filtering) dramatically. For example, "litera­

ture profiling" [8] kept only 101 keywords out of 25,000 unique words. Hotho et al. [26] re­

duced the dimensionality to below 25. As these were not evaluated in terms of consistency 

or agreement using NMI, their results were not directly comparable to GeneNarrator's re­

sults. However, it is hard to put faith in the reliability of such results with so much informa­

tion thrown away. 

The problem of high dimensionality results from the dependence on finding the 

"nearest neighbor", which in turn depends on distance calculation. In high dimensional 

space, data points seem to often be at about the same distance, so the "nearest neighbor" is 

less meaningful [7,23]. Without the need for calculating distance, the CAM algorithm han­

dles document vectors of high dimensionality (-20,000) with ease. In fact, aggressive reduc­

tion in dimensionality made CAM perform poorly. In preliminary experiments (data not 

shown) when df filtering reduced the dimensionality to -1,000, CAM failed to split the root 
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topic into two child topics. In the reported experiments, the dimensionality was reduced to 

-2,000; this was translated to a marginal improvement in clustering consistency. 

7.5 Multi-clustering 

The most dramatic improvement came from the multi-clustering idea, which was in­

spired by observing how human experts deal with inconsistency caused by outliers. The final 

result reached 84% of the best achievable agreement with the gold standard. Observe that 

even human experts cannot agree with each other 100%, and one expert may change his or 

her mind over time. Hence, the actual improvement might be even better than suggested by 

the 84% achievement. In addition, as illustrated in Chapter 6 and discussed further in the 

next section, viewing the result under the hierarchical context may look even better. 

7.6 Clustering and comparing hierarchical structures 

The input to both of the two clustering steps contained hierarchical information. The 

VOC or VOWC representation of MEDLINE records (input to the 1st clustering) was backed 

by the hierarchical MeSH ontology, and the genes' topic distributions (the input to the 2nd 

clustering step) were built on the topic hierarchy resulted from the lst-step clustering. Yet 

neither clustering algorithm (CAM or &-means) benefited from the hierarchies. The input 

was treated as flat vectors; and the hierarchies were simply ignored. This inevitably de­

graded the quality of the clusterings, as discussed in Section 6.4.2. The attempt to utilize the 

hierarchy, the concept upgrading method, tried a heuristic approach. Significant improve­

ment was not obtained, however, as discussed in the previous section. This was likely due to 

the quality of the ontology and/or the performance of the mapping algorithm. 

The newly proposed metric, normalized mutual information (NMI), compares agree­

ment between two flat clustering solutions, as do various other indices and metrics (reviewed 

in sections 4.2.3.2 and 4.2.3.3). This "flat" behavior of NMI made hierarchical clustering 

results look worse than they were from a biological perspective, because MEDLINE records 

misclassified into clusters near their ideal clusters were treated the same as records misclassi­

fied into distant, unrelated clusters. Hence, the development of hierarchy-aware clustering 

algorithms and comparing metrics should be able to improve GeneNarrator further. 
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7.7 Conclusion 

This dissertation project contributed to the field of bioinformatics in the following 

ways. 

1. A new metric (normalized mutual information) was described and used for evaluating a 

clustering algorithm in terms of its self-consistency and agreement with a gold stan­

dard. 

2. Several strategies for text clustering of biological texts were implemented and tested, 

such as different text representations (BOW- vs. concept-based vector space models), 

dimension reduction (df filtering) and multi-clustering. The most improvement came 

from multi-clustering, which identified and discarded outliers from a document set. 

3. A two-step clustering approach was designed for clustering functionally related genes 

based on information from texts. This might be applied, for example, to functional 

analysis of microarray experiments. 

4. System variants GeneNarrator I and GeneNarrator II were implemented and compared. 

The GeneNarrator design facilitates comparisons that can test hypotheses about using 

concepts and ontologies in clustering of biological texts. It also illustrates a two-step 

clustering approach for clustering topics into related areas from raw clusters of input 

data such as MEDLINE records. 
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Appendix: Gold standard gene list 

Format: gene_symbol|synonym 11synonym21... 

YBR294w|SUL 1 |SEL3 |SFP YKL141w|SDH3|CYB3 

YLR092w|SUL2| YLL041 c |SDH2|SDHB |SDH 

YJR010w|MET3| YDR178w|SDH4| 

YKL001c|MET14| Q0105 |COB |C YTB 

YPR167c|MET16| YBL045c|CORl |QCR1 

YJR137c|ECM17|MET5 Y QR065w|C YT1 |CTC 1 

YFR030w|MET 10| Y JL 166 w|QCR8 |COR5 

YNL277w|MET2| YDR529c|QCR7 |UCR7 |COR4|CRO 1 

YLR303w|MET17|MET25|MET15 YFR033c|QCR6|CR17|UCR6|COR3 

YGR155w|CYS4|STR4|NHS5|VMA41 YPR191 w|QCR2 |UCR2 |COR2|COXCH2 

YER091c|MET6|MET6 YEL024w|RIPl| 

YAL012w|CYS3|CYIl|STRl |FUN35 YHR001w-a|QCR10| 

YLR180 w|S AM 1 |ETH 10 YGR183c|QCR9|UCR9 

YDR502c |S AM2 |ETH2 YGL191w|COX13| 

YFL025c|BSTl| YLR038c|COX12| 

YDR072c|IPT 1 |S YR4 YDL067c |COX91 

YMR272c|SCS7 |FAH 1 YLR395c|COX8| 

YLR372w|SUR4|EL03|SREl|VBMl YMR256c |COX71 

YKL004w|AURl |ABR1 YHR051w|COX6| 

YPL057c|SURl |BCL21 |CSG1 YNL052w|COX5A| 

YBR036c|CSG2|CLS2 YGL187c|COX4| 

Y GL225 w|GOG51VRG41V AN2 |MCD3 YDR322c-a|TIMl 1|ATP21|ATPJ 

YEL042w|GDAl |SYGP-ORF16 YDR377w|ATP17| 

YCR034w|FEN 1 |EL02|GNS 11VBM2 YDL004w| ATP 16| ATPDELT A 

YDR297w|SUR2|SYR2 YPL271 w| ATP 151 

YDR062w|LCB2|YD9609.16 YLR295c|ATP14| 

YKR05 3c|Y SR3|LBP2 YKL016c|ATP7| 

Y JL134 w|LCB 31YSR2 |LBP 1 YDR298c|ATP5|OSCP 

YMR296c|LCBl| YPL078c| ATP4|LPF7 

YML120c|NDIl| YBR039w| ATP31 

YKL148c|SDHl|SDHA YJR121w|ATP2| 
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YBL099w|ATPl| 

Q0085|ATP6|OLI2|OLI4|PHOl 

Q0080|AAP1|ATP8 

QO130|OLI 11ATP9 

Q0045 |COX 1 |OXI3 

Q0250|COX2|OXI1 

Q0275 |COX3 |OXI2 

YEL021 w|UR A3 |MLF2 

YMR271 c |URA 10| 

YBL042c|FUIl| 

YBR021 w|FUR4 |MLF 1 

YML106 w|UR A5 |P YR5 

YKL216w|URAl| 

YLR420w|URA4| 

YJL130c|URA2| 

YLR304c|AC01 |GLU 1 

YOR136w|IDH2| 

YDR148c|KGD2| 

YFLO18c|LPD 1 |DHLP 1 |HPD 1 

Y OR 142 w|LSCl |PSC4 

YGR244c|LSC2| 

YPL262w|FUM 11 

YNL037c|IDHl| 

YNROO1 c |CIT 1 |L Y S 6 |GLU 3 

YKL085w|MDH 11 

YIL125w|KGDl |0GD1 

YJL194w|CDC6| 

YMROO1 c |CDC5 |PKX2 |MSD2 

Y AL040c|CLN3 |WHI 1 |D AF1 |FUN 10|CST7 

YBR 160 w|CDC28 |SRM5 |CDK 1 |HSL5 

YFR028c|CDC14|OAF3 

YLR103c|CDC45| 

YMR199 w|CLN 1 |PSC 1 

YPL256c|CLN2|PSC2 

YLR079w|SIC 1 |SDB25 

YFL009w|CDC4| 

YDR328c|SKP 1 |CBF3D 

YDR054c |CDC34 |UB C3 |DN A6 

YDL132w|CDC53| 

YGR108w|CLBl|SCBl 

YPR119w|CLB2| 

YDL155w|CLB3| 

YLR210w|CLB4| 

YPR120c|CLB5| 

YGR109c|CLB6| 

YKL022c|CDC 16| 

YHR166c|CDC23| 

YBL084c|CDC27 |SNB 1 

YDR052c |DBF4 |DN A5 2 

YDLO17 w|CDC7 |S AS 1 

YMR239c|RNTl | 

YLR175w|CBF5| 

YHR089c|GARl| 

YDL014w|NOPl| 

YLLOHw|SOFl| 

YNL282w|POP3| 

YHR065c|RRP3| 

YGL171w|ROKl| 

YDR021w|FALl| 

YMR229c |RRP5 |FMI 1 

YCL031c|RRP7| 

YPL266w|DIMl| 

YOR048c |RAT 1 |HKE 1 |XRN2 

YNL221c|POPl| 

YBR257w|POP4| 

YDR478w|SNMl| 

YGL078c|DBP3| 

Y GL17 3c|KEM 1 |SEP 1 |XRN 1 |DST2 |R AR5 |SKI 1 |ST 

PB ET A 

YHR069c|RRP4| 

YGR 195 w|SKI6|RRP41 |ECM20 

YDL11 lc|RRP42| 
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YCR035c|RRP43| 

Y OL021 c |DIS 3 |RRP44 

YOR001w|RRP6| 

YDR394w|RPT3|YTA2|YNT 1 

YOR117w|RPT5|YTAl 

YKL145 w|RPT 1 )YT A3 |CIM5 

YGR270w|YTA7| 

YDL007w|RPT2|YTA5 |YHS4 

YOR259c |RPT4|CRL 13 |SUG2|PCS 1 

Y GL048c|RPT 6|SUG 1 |TB Y1 |TBPY |SCB68 |CIM3 

YLR378c|SEC61| 

YPL094c|SEC62| 

Y OR254c |SEC63 |NPL 1 |PTL 1 

YLR292c|SEC72|SEC67|SIM2 

YJL034w|KAR2|GRP78|BIP 

YFL005w|SEC4|SR06 

YOR089c| VPS211YPT51 |YPT211VPT21 

YLR262c|YPT6| 

YER03 lc|YPT31 |YPT8 

YGL210w|YPT32|YPTl 1 

YFL038c|YPT 1 |YP2 

YMLOO1 w|YPT71 AST4| V AM4 
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